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Abstract
Breast cancer remains a leading cause of cancer-related mortality among women 
worldwide, necessitating early and accurate detection for effective treatment 
and improved survival rates. Artificial intelligence (AI) has shown significant 
potential in enhancing the diagnostic and prognostic capabilities in breast cancer 
recognition. However, the black-box nature of many AI models poses challenges 
for their clinical adoption due to the lack of transparency and interpretability. 
Explainable AI (XAI) methods address these issues by providing human-
understandable explanations of AI models’ decision-making processes, thereby 
increasing trust, accountability, and ethical compliance. This review explores the 
current state of XAI methods (Local Interpretable Model-agnostic Explanations, 
Shapley Additive explanations, Gradient-weighted Class Activation Mapping) in 
breast cancer recognition, detailing their applications in various tasks such as 
classification, detection, segmentation, prognosis, and biomarker discovery. By 
integrating domain-specific knowledge and developing visualization techniques, 
XAI methods enhance the usability and interpretability of AI systems in clinical 
settings. The study also identifies the key challenges and future directions in the 
evaluation of XAI methods, the development of standardized metrics, and the 
seamless integration of XAI into clinical workflows.
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1 INTRODUCTION
1.1 Background on Breast Cancer and 
Its Impact

Breast cancer is a significant global health concern, 
affecting millions of women worldwide. As the most 
prevalent cancer among women, its incidence rate has 
been on a steady rise, leading to increased mortality 
rates and health disparities across different regions and 
populations[1]. Early detection and accurate diagnosis 
are pivotal in improving survival rates, underscoring the 
necessity for the development of effective diagnostic 
tools[2].

The economic burden of breast cancer is substantial, 
encompassing both direct and indirect costs. Direct costs 
include expenses related to medical care, diagnosis, 
and treatment, such as hospitalization, surgery, 
chemotherapy, radiotherapy, targeted therapy, and 

imaging tests[3]. Indirect costs encompass productivity 
loss and societal impacts, including loss of income due to 
work absence or reduced working capacity, premature.

Mortality, years of potential life lost, and caregiver 
burden[4]. The global economic impact of breast cancer 
is immense, straining healthcare systems and affecting 
patients and their families[5].

Breast cancer screening and diagnosis are paramount 
in early detection, which contributes to improved 
survival rates. Mammography is the primary screening 
tool, while other imaging modalities like ultrasound, 
MRI, and tomosynthesis also play a role[6]. Screening 
programs have proven effective in reducing mortality 
rates, but challenges in breast cancer diagnosis persist. 
These challenges include subjectivity and variability in 
radiologists’ interpretations, false positives and negatives 
leading to unnecessary biopsies or delayed treatment, 
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and limited access to screening and diagnostic services in 
low-resource settings[7].

The need for improved precision diagnostic techniques 
is evident[8], and artificial intelligence (AI) has the 
potential to transform breast cancer recognition. Deep 
learning models (e.g., DeepSHAP) can analyze and 
interpret medical images, predict treatment response 
and prognosis, and facilitate personalized treatment 
planning[9-11]. The adoption of AI-based diagnostic 
tools in clinical settings is hindered by issues related to 
transparency, interpretability, ethical considerations, 
regulatory hurdles, and integration into clinical 
workflows[12-15].

1.2 Role of Imaging Modalities in 
Breast Cancer Recognition

Breast cancer recognition relies on various imaging 
modalities such as mammography[6,16], ultrasound[9,10,17,18], 
magnetic resonance imaging (MRI)[19], and histopathology 
images[20]. Radiologists analyze these images to identify 
suspicious lesions and assess their malignancy. The 
interpretation of these images can be subjective and prone 
to human error. AI techniques, especially deep Shapley 
additive explanations (DeepSHAP), have demonstrated 
remarkable performance in breast cancer recognition 
tasks. Their lack of transparency and interpretability can 
limit their clinical utility. The explainable AI (XAI) methods 
have emerged as a promising approach to address these 
limitations, providing an understanding of the AI models’ 
decision-making process and enabling more informed 
clinical decisions[21,22].

Imaging modalities play a crucial role in breast 
cancer recognition, as they enable the early detection, 
diagnosis, and monitoring of the disease. Various 
imaging techniques are used to visualize breast tissue, 
identify suspicious lesions, and assess their malignancy. 
The choice of the appropriate imaging modality depends 
on factors such as the patient’s age, breast density, 
and risk factors for breast cancer. The main imaging 
modalities used in breast cancer recognition include 
mammography, ultrasound, MRI, and digital breast 
tomosynthesis (DBT).

Mammography[23] is the gold standard for breast 
cancer screening and is recommended for women of 
average risk starting at age 40 or 50, depending on the 
guidelines followed. It uses low-dose X-rays to produce 
images of breast tissue, which can reveal calcifications, 
masses, and architectural distortions that may indicate 
the presence of breast cancer. Mammography is highly 
effective in detecting breast cancer in its early stages, 
which significantly improves treatment outcomes and 
survival rates. However, mammography has some 
limitations, including reduced sensitivity in dense breast 
tissue, false positives, and ionizing radiation exposure.

Breast ultrasound[24,25] uses high-frequency sound 
waves to create images of breast tissue, making it a 
radiation-free modality. Ultrasound is often used as an 
adjunct to mammography, especially in women with 
dense breasts or those who cannot undergo.

It can differentiate between solid masses and fluid-
filled cysts and guide biopsies of suspicious lesions. While 
ultrasound is a valuable supplementary tool, it has lower 
specificity than mammography, which may result in more 
false-positive findings.

Breast MRI[26] is a highly sensitive imaging modality 
that uses a powerful magnetic field and radio waves 
to generate detailed images of breast tissue. MRI is 
recommended for women with a high risk of breast 
cancer, such as those with a strong family history or a 
known genetic mutation like Breast invasive Carcinoma 
(BRCA)1 or BRCA2[27]. It is also used for evaluating the 
extent of the disease in newly diagnosed patients and 
monitoring response to neoadjuvant therapy. Although 
MRI has high sensitivity, it is associated with a higher 
rate of false positives and is more expensive than other 
imaging techniques.

DBT, also known as 3D mammography, is a relatively 
new imaging modality that acquires multiple low-
dose X-ray images at different angles, which are then 
reconstructed into a three-dimensional representation 
of the breast[28,29]. DBT improves the detection of breast 
cancer, particularly in women with dense breasts, 
by reducing the overlapping of breast tissue seen in 
conventional mammography. This technology has been 
shown to increase cancer detection rates and reduce the 
number of false positives and unnecessary biopsies[30].

The role of imaging modalities in breast cancer 
recognition is vital, as they facilitate early detection, 
diagnosis, and monitoring of the disease. Each modality 
has its advantages and limitations, and their combined 
use can provide a comprehensive assessment of 
breast tissue, improving the accuracy of breast cancer 
recognition and ultimately enhancing patient care.

1.3 Potential of AI in Breast Cancer 
Diagnosis and Prediction

AI techniques, particularly those involving deep 
learning and machine learning algorithms, have 
demonstrated significant potential in breast cancer 
diagnosis and prediction[29,31,32]. These techniques can 
analyze complex medical data, identify patterns, and 
make predictions that can assist healthcare professionals 
in making more accurate and timely decisions[33]. The 
potential of AI techniques in breast cancer diagnosis 
and prediction can be explored through various aspects, 
including image analysis, classification, treatment 
response prediction, and personalized medicine[34-36].
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AI techniques can enhance the analysis of medical 
images acquired through different imaging modalities, 
such as mammography[37], ultrasound, MRI, and DBT. 
DeepSHAP, such as convolutional neural networks (CNNs), 
have shown exceptional performance in detecting and 
classifying breast lesions. These models can identify 
subtle features and patterns that may be overlooked 
by human observers, leading to improved diagnostic 
accuracy and reduced interobserver variability[38].

The AI algorithms can be trained to classify breast 
lesions as benign or malignant and assess the risk of 
developing breast cancer[39]. These classifications can 
be based on a combination of imaging features, patient 
demographics, and clinical history. By providing accurate 
and consistent classifications, AI techniques can help 
reduce the number of unnecessary biopsies, lower false-
positive rates, and minimize anxiety for patients.

AI techniques can be employed to predict the res- 
ponse to various breast cancer treatments, such as 
chemotherapy, radiotherapy, and hormone therapy[36]. By 
analyzing imaging, genomic, and clinical data, machine 
learning models can identify biomarkers and patterns 
associated with treatment response[40]. This information 
can help health.

Care professionals make informed decisions on 
treatment planning, improving patient outcomes and 
reducing the likelihood of over- or under-treatment.

Breast cancer is a heterogeneous disease with 
diverse molecular subtypes, clinical behavior, and 
prognosis. Genomic and transcriptomic profiling has 
become instrumental in advancing the diagnosis and 
treatment of breast cancer, offering a molecular-level 
understanding of individual tumors. This approach 
enables the identification of genetic alterations and gene 
expression patterns that drive the disease, facilitating 
personalized medicine strategies that are tailored to 
the specific molecular characteristics of a patient’s 
tumor[41]. Genomic profiling involves analyzing the DNA 
sequences in breast cancer cells to identify mutations 
and variations. These genetic markers can help predict 
how aggressive the cancer is likely to be and suggest the 
most effective treatment options[42]. Technologies such 
as next-generation sequencing have revolutionized this 
field by allowing for rapid, comprehensive analyses of 
genomic alterations[43]. Transcriptomic profiling assesses 
the RNA expressions to understand which genes are 
active in breast cancer cells. This profiling provides 
insights into the functional consequences of genetic 
alterations observed in the genomic profile. It helps 
in understanding the tumor environment, predicting 
response to specific treatments, and identifying potential 
resistance mechanisms to existing therapies[44]. The 
integration of genomic and transcriptomic data has led 

to the development of targeted therapies and improved 
prognostic models, significantly enhancing patient 
outcomes[45]. AI techniques can analyze large-scale data 
from sources such as gene expression profiles, genomic 
alterations, and clinical information to identify specific 
patterns and subtypes[46]. This information can be used to 
predict patient outcomes, such as recurrence and survival 
rates, and guide personalized treatment plans tailored to 
each patient’s unique characteristics.

Despite the promising potential of AI techniques 
in breast cancer diagnosis and prediction[47], several 
challenges remain, including the need for high-quality 
and diverse data, the integration of AI tools into clinical 
workflows, and the “black-box” nature of some AI 
models. Addressing these challenges, particularly by 
improving model transparency and interpretability 
through XAI methods, will be essential to fully harness 
the potential of AI techniques in breast cancer diagnosis 
and prediction and improve patient outcomes[48].

1.4 Objectives and Contributions
This review aims to explore the potential and 

challenges of XAI methods in breast cancer recognition, 
providing a comprehensive review of recent advances 
and identifying future research directions. More 
specifically, the objectives of this study are to: (1) 
detail the challenges associated with the black-
box nature of AI models, exploring the implications 
for trust, accountability, ethical considerations, and 
model improvement. (2) Review the methodologies 
and applications of key XAI methods in breast cancer 
recognition, including local interpretable model-agnostic 
explanations (LIME), Shapley additive explanations 
(SHAP), and gradient-weighted class activation mapping 
(Grad-CAM). (3) Discuss the challenges and future 
directions in the evaluation of explanations, development 
of domain-specific XAI techniques, and integration of XAI 
methods into the clinical workflow.

Through these objectives, this study intends to provide 
valuable insights into the promising field of XAI in breast 
cancer recognition, contributing to the ongoing research 
and development efforts aimed at enhancing the clinical 
utility and interpretability of AI-based diagnostic tools.

The contributions of this paper are: (1) Present an 
overview of XAI in breast cancer recognition, capturing 
the latest research advancements, methodologies, and 
applications. (2) Identify current challenges and point 
out promising future research avenues, potentially 
guiding the development and evaluation of XAI methods 
in the future. (3) Contribute to the broader discourse 
on the interpretability of AI systems, fostering a deeper 
understanding and broader adoption of AI in healthcare 
settings, and potentially leading to improved patient 
outcomes.
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2 METHODS
Several XAI methods have been employed to improve 

the interpretability of AI models for breast cancer 
recognition. Some prominent methods include LIME, 
SHAP, and Grad-CAM. These are explained in further 
sections in more detail.

2.1 Black-box Nature of AI Models 
and the Need for XAI

The black-box nature of AI models, particularly 
DeepSHAP such as CNNs, refers to the limited 
transparency and interpretability of these models’ 
decision-making processes[49]. Although AI models have 
shown remarkable performance in various applications, 
including breast cancer diagnosis and prediction, 
understanding the rationale behind their predictions is 
challenging. This lack of transparency can hinder the 
adoption of AI models in clinical settings, where trust 
and accountability are paramount. XAI has emerged as a 
solution to address the black-box problem and enhance 
the interpretability of AI models[13,50].

The black-box nature of AI models poses several 
challenges, especially in the context of healthcare[51]: 
(1) Clinicians may be reluctant to rely on AI models for 
decision-making if they cannot understand or validate the 
reasoning behind the predictions. Trust is essential for the 
adoption of AI tools in clinical practice. (2) In healthcare, 
decision-makers must be accountable for their actions. 
The lack of transparency in AI models can make it 
difficult to assign responsibility in cases where errors 
or adverse outcomes occur. (3) AI models must adhere 
to ethical principles, such as fairness, transparency, 
and non-maleficence. Regulatory bodies also require 
evidence of the safety and effectiveness of AI tools, 
which may be difficult to demonstrate if the models’ 
decision-making processes are not transparent. (4) 
Without insights into the decision-making process, it can 
be challenging to identify the limitations of AI models and 
make improvements, potentially leading to suboptimal 
performance or biased predictions.

XAI aims to provide transparency and interpretability 
in AI models’ decision-making processes, addressing 
the challenges posed by the black-box nature of 
these models. By generating human-understandable 
explanations for the predictions, XAI methods can help 
clinicians and other stakeholders build trust in AI models, 
ensure accountability, meet ethical and regulatory 
requirements, and facilitate model improvement. Key 
aspects of XAI include: (1) Local explanations: Providing 
explanations for individual predictions or decisions, 
helping clinicians understand the specific reasoning 
behind each case[53]. (2) Global explanations: Offering 
insights into the general decision-making process 
of the AI model, which can help users understand 

how the model behaves across different cases and 
identify potential biases or limitations. (3) Visualization 
techniques: Presenting the explanations in an intuitive 
and easily understandable manner, such as highlighting 
important features or regions in medical images that the 
AI model has based its decision on.

The black-box nature of AI models poses significant 
challenges in the context of healthcare, where trust, 
accountability, and transparency are crucial[54,55]. XAI 
methods can address these challenges by enhancing the 
interpretability of AI models, fostering trust, and enabling 
their successful adoption in clinical settings, ultimately 
leading to improved patient outcomes.

2.2 LIME
LIME is a model-agnostic method that provides local 

explanations for individual predictions of machine learning 
models[56]. The key idea of LIME is to approximate 
the complex model locally around the prediction to be 
explained by a simpler, interpretable model. It generates 
a set of perturbed instances around the input and trains 
an interpretable model, such as a linear model or decision 
tree, to approximate the original model’s behavior locally. 
LIME has been employed to explain the predictions of AI 
models in breast cancer classification, helping radiologists 
understand the rationale behind the model’s decisions. 
This method has been applied to a variety of breast 
cancer recognition tasks, including classification and 
segmentation, offering valuable insights into the decision-
making process of CNNs.

The LIME procedure can be formalized as follows: 
Given an instance x to explain and a black-box model f, 
the first step is to generate a set of perturbed instances 
x′ around x and compute their corresponding predictions 
f(x′). The next step is to compute the similarity π(x, x′)  
between the original instance x and each perturbed 
instance x′, which measures how close they are. Finally, 
an interpretable model g (e.g., linear or decision tree 
model) is fitted on the perturbed instances, using the 
predictions f(x′) as the target and the similarity π(x, x′) as 
weights.

The fitting of the interpretable model can be defined 
as the solution of the following.

where G is the class of interpretable models, z′ is the 
interpretable representation of the perturbed instance x′ 
(e.g., binary vector indicating the presence or absence 
of words in text data, or superpixels in image data), f(x′) 
is the prediction of the black-box model for x′, π(x, x′) is 
the similarity between x and x′ , and Ω(g) is a measure 
of the complexity of the interpretable model g (e.g., the 
number of non-zero coefficients in a linear model).
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The interpretable model g provides an explanation 
for the prediction at instance x, showing which features 
in the interpretable representation z are important for 
the prediction. Despite its simplicity, LIME can provide 
valuable insights into the behavior of complex models 
and help detect potential mistakes or biases.

In the context of breast cancer recognition tasks, LIME 
can be used to identify which features in a mammogram 
or histopathological image the CNN is focusing on to 
distinguish between benign and malignant tumors or to 
segment the tumor from the surrounding tissue. In the 
task of breast cancer classification, LIME can provide 
a visual explanation of the model’s decision-making 
process. By highlighting the regions in the image that the 
model considers significant for its prediction, LIME offers 
a form of validation for the model’s predictions. This can 
assist clinicians in understanding the basis of the model’s 
decision, potentially aiding in their final diagnosis. In the 
task of breast cancer segmentation, LIME can be used to 
identify the features that the model consid-ers to be part 
of the tumor. This can be particularly useful in cases where 
the tumor boundaries are not clear, providing a visual 
guide that can assist clinicians in determining the extent of 
the tumor. The application of LIME in these tasks not only 
enhances the interpretability of DeepSHAP but also builds 
trust in their predictions. By providing visual explanations 
for their decisions, these models become less of a “black 
box”, and their predictions can be validated against 
the expert knowledge of clinicians. This is particularly 
important in the medical field, where the stakes are high 
and the predictions of these models can have.

In the context of breast cancer recognition tasks, 
LIME can be used in various ways: LIME can help in 
understanding which features of a mammogram or 
histopathological image were most relevant in classifying 
a tumor as benign or malignant. This can provide 
valuable insights to radiologists and pathologists, 
potentially improving diagnostic accuracy. In tasks where 
the goal is to segment or outline the tumor in an image, 
LIME can provide a heatmap that highlights the areas 
of the image that were most relevant in identifying the 
tumor. This can help in evaluating the accuracy of the 
segmentation and in understanding the model’s decision-
making process. Enhancing interpretability: One of 
the main challenges with machine learning models is 
their “black box” nature, meaning it’s often difficult to 
understand how they make their decisions. By providing 
explanations for each prediction, LIME can make these 
models more interpretable, leading to greater trust in 
their predictions.

2.3 SHAP
SHAP is a unified measure of feature importance 

that assigns each feature an importance value for a 
particular prediction[57]. Its name and theory are derived 

from the concept of Shapley values in cooperative 
game theory. Shapley values provide a fair distribution 
of the total payoff of a game to its players based on 
their contribution. In the context of machine learning, 
the “game” is the prediction task, the “players” are 
the features, and the “payoff” is the prediction. SHAP 
assigns each feature an importance value for a particular 
prediction, which is the average marginal contribution 
of that feature across all possible feature subsets. This 
ensures that the sum of the SHAP values for all features 
equals the difference between the prediction and the 
average prediction for all instances.

Given a game with n players, where each player 
corresponds to a feature in the model, a coalition S of 
players is a subset of all players. The value of a coalition, 
v(S), is defined as the prediction of the model with 
features in S turned on, minus the prediction of the 
model with all features turned off. The Shapley value ϕi 
for player i is then defined as:

where N is the set of all players, |S| is the number of 
players in S, and n is the total number of players. The 
term |S|!(n−|S|−1)! is the weight for each coalition, 
which is chosen. n! such that all permutations of players 
are equally likely.

SHAP has several desirable properties. It is the only 
method that satisfies efficiency (the feature importances 
sum up to the total importance), symmetry (identical 
features get identical importances), dummy (a feature 
that does not improve the prediction gets no importance), 
and additivity (for ensemble models, the feature 
importances sum up to the total importance). SHAP 
provides both local interpretability (explaining individual 
predictions) and global interpretability (explaining 
the whole model by averaging the SHAP values of all 
instances). It is model-agnostic and can be used with 
any model, although specific efficient algorithms are 
available for tree-based models and DeepSHAP. Despite 
its advantages, SHAP can be computationally intensive, 
especially for models with a large number of features or 
complex interactions. The interpretation of SHAP values 
can be challenging due to highly correlated features.

SHAP is a powerful tool for interpreting machine 
learning models, and its application in breast cancer 
recognition tasks has been demonstrated in several 
studies. For instance, Zhang[58] used SHAP to analyze 
the important factors affecting the prognosis of breast 
cancer patients. The study found that tumor stage, TNM 
stage, grade, and age have a significant impact on the 
prognosis of breast cancer patients. In another study, 
Zhao and Jiang[59] developed a machine learning model 
using the SHAP framework to predict distant metastasis 
in male breast cancer patients. The study found that 
the model using SHAP had the best predictive effect 
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among all the models tested. Çubuk et al.[60] used SHAP 
in combination with Gaussian Processes to model both 
metabolic and signaling pathway activities of BRCA. They 
found that several metabolites have a strong impact 
on signaling circuits, pointing to a complex crosstalk 
between signaling and metabolic pathways. Mendonca-
Neto et al.[61] used SHAP values for gene analysis in the 
classification of breast cancer subtypes. They found that 
certain genes are important for the classification of each 
subtype. These studies demonstrate the potential of 
SHAP in providing interpretable insights into the complex 
factors influencing breast cancer recognition tasks.

2.4 Grad-CAM
Grad-CAM is a visualization technique that highlights 

the input regions most responsible for a specific class 
prediction[62]. It computes the gradients of the class score 
with respect to the feature map activations, producing a 
coarse localization map that highlights the discriminative 
regions. Grad-CAM has been utilized in various breast 
cancer recog-nition tasks, such as lesion segmentation 
and malignancy prediction, to provide visual explanations 
for the model’s predictions. The idea behind Grad-CAM is 
to first compute.

The gradients of the output score for a particular class 
with respect to the feature maps of the final convolutional 
layer. These gradients serve as weights indicating the 
importance of each feature map in making the final 
decision. The feature maps are then combined into a 
single map by performing a weighted sum using these 
gradients, followed by a ReLU activation to keep only 
the positive influences. Formally, the computation of the 
Grad-CAM heatmap L can be defined as follows:

where Lc
Grad-CAM is the Grad-CAM heatmap for class c, Ak 

represents the k-th feature; map, and αk
c is the weight 

of the k-th feature map for class c. The weights αk
c are 

computed as the gradients of the score for class c (before 
the softmax) with respect to the feature maps:

where y c is the score for class c, Ak
ij is the activation of 

the k-th feature map at spatial location (i, j), and Z is a 
normalization constant, typically the number of pixels in 
the feature map. The resulting Grad-CAM heatmap can 
be overlaid on the input image to visualize which regions 
contributed most to the model’s decision, providing 
valuable insights into the model’s behavior and helping 
identify potential mistakes or biases.

Grad-CAM has emerged as a powerful tool for 
enhancing the interpretability of DeepSHAP, particularly 
in the domain of medical imaging[63]. This technique has 
been applied to various breast cancer recognition tasks, 
including classification and segmentation, providing 
valuable insights into the decision-making process of 

CNNs. Grad-CAM works by producing a coarse localization 
map of important regions in the image for a particular 
category. This is achieved by using the gradients of target 
class, inputted into the final convolutional layer to create 
a localization map showing influential regions in the 
image for predicting the target class.

In the context of breast cancer recognition tasks, 
Grad-CAM can highlight areas in mammograms or 
histopathological images that the model considers 
significant for making its predictions. In the task of breast 
cancer classification, Grad-CAM can be used to visualize 
which regions in a mammogram or histopathological 
image the CNN is focusing on to distinguish between 
benign and malignant tumors. This not only provides a 
form of validation for the model’s predictions but also 
offers clinicians a visual explanation of the model’s 
decision, potentially aiding in their final diagnosis. In the 
task of breast cancer segmentation, Grad-CAM can be 
used to highlight the regions that the model considers 
to be part of the tumor. This can be particularly useful in 
cases where the tumor boundaries are not clear, providing 
a visual guide that can assist clinicians in determining the 
extent of the tumor. The application of Grad-CAM in these 
tasks not only enhances the interpretability of DeepSHAP 
but also builds trust in their predictions. By providing 
visual explanations for their decisions, these models 
become less of a “black box”, and their predictions can be 
validated against the expert knowledge of clinicians. This 
is particularly important in the medical field, where the 
stakes are high and the predictions of these models can 
have significant implications for patient care.

2.5 Summary
The applications of XAI methods in breast cancer tasks 

are summarized in Table 1.

The XAI methods are compared in Table 2 as follows: 
“Interpretability” refers to how easy it is for a human to 
understand the explanations provided by the method. 
“Computation Time” refers to how long it takes for the 
method to generate an explanation. “Applicability” refers 
to the types of models that the method can be applied 
to. “Explanation Type” refers to whether the method 
provides local explanations (i.e., explanations for individual 
predictions) or global explanations (i.e., explanations for the 
model’s behavior in general), or both. “Model Dependency” 

Table 1. Applications of XAI Methods in Different 
Breast Cancer Tasks

LIME SHAP Grad-CAM

Classification [39,63-65] [66,67] [39,68-72]

Detection [73,74] [67,75-77] [78-82]

Segmentation [5,83] [80]

Prognosis [63,84] [85-89]

Biomarker Discovery [7,90,91]
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Table 2. Comparison of XAI Methods According to Various Criteria

LIME SHAP Grad-CAM

Interpretability High Medium Low

Computation time Fast Slow Medium

Applicability General General Convolutional networks

Explanation type Local Both Both

Model dependency Model-agnostic Model-agnostic Model-specific

refers to whether the method is model-agnostic (i.e., can 
be applied to any type of model) or model-specific (i.e., can 
only be applied to certain types of models).

3 APPLICATIONS OF XAI FOR 
BREAST CANCER DIAGNOSTICS

XAI aims to address the interpretability and trans- 
parency issues associated with traditional AI models. In 
the context of breast cancer diagnostics, XAI techniques 
have been applied in various scenarios, providing valuable 
insights into the decision-making process of AI models and 
enhancing their trustworthiness.

3.1 Domain-specific XAI Techniques
Incorporating domain knowledge into the development 

and application of XAI techniques is of paramount 
importance. Domain knowledge can provide valuable 
context that can enhance the interpretability and usability 
of AI systems. For instance, in medical imaging, domain 
knowledge about the anatomy, pathology, and imaging 
techniques can help in generating more meaningful and 
clinically relevant explanations[92].

Domain knowledge can be incorporated into XAI 
techniques in various ways. One approach is to design AI 
models that can incorporate domain-specific features or 
rules. For instance, in medical imaging, an AI model can 
be designed to consider the specific.

Characteristics of different types of tissues or lesions. 
Another approach is to use domain knowledge to guide 
the generation of explanations. For example, in a game 
design context, explanations can be generated based on 
the specific rules and mechanics of the game[93].

Moreover, domain-specific XAI techniques can be 
developed to address the specific needs and challenges 
of different domains. For instance, in high-risk decision-
making tasks, such as identifying edible mushrooms, 
XAI techniques can be designed to provide detailed 
explanations that can help users make safer and more 
informed decisions[94].

The development of domain-specific XAI techniques 
also poses several challenges. One challenge is how to 
effectively incorporate domain knowledge into AI models 

and explanations. This requires a deep understanding of 
the domain as well as the AI techniques. Another challenge 
is how to evaluate the effectiveness of domain-specific 
XAI techniques. This requires the development of domain-
specific evaluation metrics and benchmarks. Domain-
specific XAI techniques hold great promise for enhancing 
the interpretability and usability of AI systems. However, 
more research is needed to address the challenges and 
realize the full potential of these techniques.

3.2 Use Cases and Scenarios
3.2.1 Breast Cancer Classification

One of the primary applications of XAI in breast 
cancer recognition is in the classification of benign and 
malignant tumors. For instance, Jabeen et al.[9] proposed 
a deep learning model for breast cancer classification 
from ultrasound images, incorporating XAI techniques to 
provide interpretable visualizations of the model’s decision-
making process. Similarly, Rajpal et al.[95] developed 
an XAI-based approach for breast cancer subtype 
classification using methylation data, providing insights 
into the biomarkers used by the model for classification. 
XAI has also been utilized in the classification of breast 
lesions. In a study by Hussain et al.[39], shape-based breast 
lesion classification using digital tomosynthesis images was 
performed. The role of XAI was significant in this study as 
it provided a clear understanding of the model’s decision-
making process, thereby increasing the trust in AI-based 
diagnostic tools.

Further we discuss a simplified example of how a XAI 
method might be used in a real-life scenario of breast 
cancer classification (Algorithm 1). This example uses 
a XAI method, called ExplainableModel. This model 
is trained on a dataset of breast cancer images and 
associated labels (benign or malignant), and then used to 
predict the class of a new, unseen image. The model also 
provides an explanation for its prediction.

Algorithm 1. Breast Cancer Classification using XAI
Require: Training dataset D={(xi, yi)}n

i=1, where xi is a 
breast cancer image and yi is the associated label (benign 
or malignant).

Require: New, unseen breast cancer image xnew.
Ensure: Predicted class ypred and explanation e for the 

prediction.
1: Initialize the explainable model: model←Explain- 
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ableModel()
2: Train the model on the dataset D: model.train(D)
3: Use the trained model to predict the class of xnew: 

ypred←model.predict(xnew)
4: Generate an explanation for the prediction: e← 

model.explain(xnew)
5: return ypred, e

3.2.2 Breast Cancer Detection
XAI techniques have also been applied in the detection 

of breast cancer from various types of medical images. 
For example, Rajinikanth et al.[11] used XAI to interpret 
the decision-making process of a model for breast 
cancer detection from thermal images. In another 
study, Prodan et al.[16] applied deep learning methods 
for mammography analysis and breast cancer detection, 
using XAI to provide interpretable explanations of the 
model’s predictions.

Further we discuss a simplified example of how a XAI 
method might be used in a real-life scenario of breast 
cancer classification (Algorithm 2). This example uses a 
XAI method, called ExplainableModel. This model is trained 
on a dataset of mammogram images and associated 
labels (cancer or no cancer), and then used to predict the 
presence of cancer in a new, unseen mammogram. The 
model also provides an explanation for its prediction.

Algorithm 2. Breast Cancer Detection using XAI
Require: Training dataset D={(xi, yi)}n

i=1, where xi is a 
mammogram image and yi is the associated label (cancer 
or no cancer).

Require: New, unseen mammogram image xnew.
Ensure: Predicted label ypred and explanation e for the 

prediction.
1: Initialize the explainable model: model←Explain- 

ableModel()
2: Train the model on the dataset D: model.train(D)
3: Use the trained model to predict the label of xnew: 

ypred←model.predict(xnew)
4: Generate an explanation for the prediction: e← 

model.explain(xnew)
5: return ypred, e

3.2.3 Breast Cancer Segmentation
In the task of breast cancer segmentation, XAI 

can provide insights into the regions that the model 
considers to be part of the tumor. Kadry et al.[19] used 
XAI to interpret the decision-making process of a model 
for tumor extraction in breast MRI, providing valuable 
insights into the model’s segmentation process.

Further we discuss a simplified example of how a XAI 
method might be used in a real-life scenario of breast 
cancer segmentation (Algorithm 3). This example uses 
a XAI method, which we call ExplainableModel. This 

model is trained on a dataset of mammogram images 
and associated segmentation masks (which indicate the 
location of cancerous tissue), and then used to predict 
the segmentation mask for a new, unseen mammogram. 
The model also provides an explanation for its prediction.

3.2.4 Breast Cancer Prognosis
XAI techniques have also been applied in predicting 

the prognosis of breast cancer pa-tients. For instance, 
Massafra et al.[96] used XAI to interpret the decision-
making pro-cess of a model for predicting invasive disease 
events in breast cancer patients, providing insights into the 
factors considered by the model in its predictions.

Further we discuss a simplified example of how an 
XAI method might be used in a real-life scenario of 
breast cancer prognosis (Algorithm 4). This example 
uses a hypothetical XAI method, which we’ll call 
ExplainableModel. This model is trained on a dataset of 
Algorithm 3.

Algorithm 3. Breast Cancer Segmentation using XAI
Require: Training dataset D={(xi, yi)}n

i=1, where xi 
is a patient record and yi is the associated prognostic 
outcome.

Require: New, unseen mammogram image xnew.
Ensure: Predicted segmentation mask mpred and 

explanation e for the prediction.
1: Initialize the explainable model: model←Explain- 

ableModel()
2: Train the model on the dataset D: model.train(D)
3: Use the trained model to predict the segmentation 

mask for xnew: mpred←model.predict(xnew)
4: Generate an explanation for the prediction: e← 

model.explain(xnew)
5: return mpred, e

Patient records and associated prognostic outcomes 
(e.g., survival time), and then used to predict the 
prognosis for a new, unseen patient record. The model 
also provides an explanation for its prediction.

Algorithm 4. Breast Cancer Prognosis using XAI
Require: Training dataset D={(xi, yi)}n

i=1, where xi 
is a patient record and yi is the associated prognostic 
outcome.

Require: New, unseen patient record xnew.
Ensure: Predicted prognostic outcome ypred and 

explanation e for the prediction.
1: Initialize the explainable model: model←Explain 

ableModel()
2: Train the model on the dataset D: model.train(D)
3: Use the trained model to predict the prognostic 

outcome for xnew: ypred←model.predict(xnew)
4: Generate an explanation for the prediction: e← 

model.explain(xnew)
5: return ypred, e
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3.2.5 Breast Cancer Biomarker Discovery
XAI has also been instrumental in the discovery of 

biomarkers for breast cancer. In a study by Rajpal et al.[97],  
an XAI approach was used for biomarker discovery for 
breast cancer subtype classification using methylation 
data. The use of XAI in this context provided a clear 
understanding of the biomarkers used by the model for 
classification, thereby enhancing the interpretability of the 
model.

Further we discuss a simplified example of how an 
XAI method might be used in a real-life scenario of 
breast cancer biomarker discovery (Algorithm 5). This 
example uses a hypothetical XAI method, which we call 
ExplainableModel. This model is trained on a dataset of 
patient genomic data and associated cancer outcomes, and 
then used to identify potential biomarkers in a new, unseen 
genomic dataset. The model also provides an explanation 
for its findings.

3.2.6 Summary
The applications of XAI in breast cancer recognition 

tasks (summarized in Table 3) not only enhances the 
interpretability of DeepSHAP but also builds trust in their 
predictions. By providing visual explanations for their 
decisions, these models become.

Algorithm 5. Breast Cancer Biomarker Discovery 
using XAI

Require: Training dataset D={(xi, yi)}n
i=1, where xi is 

a patient’s genomic data and yi is the associated cancer 
outcome.

Require: New, unseen genomic dataset xnew.
Ensure: Predicted potential biomarkers bpred and 

explanation e for the prediction.
1: Initialize the explainable model: model - Explain- 

ableModel()
2: Train the model on the dataset D: model.train(D)
3: Use the trained model to identify potential biomarkers 

in xnew: bpred←model.predict(xnew)
4: Generate an explanation for the prediction: e←model.

explain(xnew)
5: return bpred, e

Less of a “black box” and their predictions can be 
validated against the expert knowledge of clinicians. This is 
particularly important in the medical field, where the stakes 
are high and the predictions of these models can have 
significant implications for patient care.

3.3 Evaluation of Explanations
The evaluation of explanations generated by XAI models 

is crucial to ensure their effectiveness and reliability. The 
need for quantitative evaluation metrics arises from the 

necessity to objectively assess the quality of explanations 
and compare different XAI methods. These metrics 
provide a standardized measure of evaluation, enabling 
a fair comparison across different models and domains. 
They can assess various aspects of explanations, such as 
their fidelity to the original model, their interpretability, or 
their usefulness to the end-user[98,99].

Several approaches have been proposed to evaluate 
the quality of explanations provided by XAI models. 
These approaches can be broadly categorized into 
two types: user-centric evaluations and model-centric 
evaluations.

(1) User-centric evaluations focus on the usefulness 
of explanations to the end-user. They often involve 
user studies where human subjects interact with the 
XAI system and provide feedback on the quality of 
explanations. These evaluations can assess various 
aspects of explanations, such as their understandability, 
usefulness in decision-making, and their impact on user 
trust in the AI system[100].

(2) Model-centric evaluations, on the other hand, 
focus on the fidelity of explanations to the original model. 
They often involve comparing the predictions of the 
original model with those of the explanation model. High 
fidelity indicates that the ex-planation model accurately 
represents the decision-making process of the original 
model.

XAI methods provide clarity on how AI models derive 
their predictions, which is essential in clinical settings for 
validating and trusting AI-assisted diagnoses. Different 
XAI models return different types of explanatory 
information, primarily focusing on the features and 
reasoning that underpin their decision-making processes. 
Here, we introduce the primary forms of explanations 
provided by key XAI methods employed in breast cancer 
diagnostics.

LIME explains predictions by approximating the local 
decision boundary of any classifier with an interpretable 
model. It highlights which features in a specific instance 
(e.g., a mammogram or histopathological image) most 
influence the model’s prediction. For instance, LIME 
might indicate that the presence of irregular mass shapes 
or specific texture patterns strongly suggests malignancy 
in breast cancer diagnosis.

SHAP values explain the output of any model by 
computing the contribution of each feature to the 
prediction. These values are based on game theory and 
provide a fair distribution of the prediction output among 
the features. In breast cancer, SHAP can elucidate which 
clinical parameters (like tumor size, age of the patient, 
or genetic markers) and image features (such as lesion 
density or margin characteristics) are most impactful in 
models predicting cancer stages or treatment responses.
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Table 3. Applications of XAI in Breast Cancer Recognition

Application Area Technique Description

Breast cancer 
classification

Deep learning 
and XAI

Jabeen et al.[9]: Classification of tumors using ultrasound images and interpretable 
visualizations. Rajpal et al.[95]: Subtype classification using methylation data with 
insights into biomarkers.

Hussain et al.[39]: Shape-based lesion classification with digital tomosynthesis 
images.

Breast cancer 
detection

Deep learning 
and XAI

Rajinikanth et al.[11]: Detection from thermal images with in-
terpretable decision-making. Prodan et al.[16]: Mammography
analysis for cancer detection with model prediction explanations.

Breast cancer 
segmentation

Tumor 
segmentation

Kadry et al.[19]: Interpretation of MRI-based tumor extraction.

Breast cancer 
prognosis

Prognostic 
prediction

Massafra et al.[96]: Prediction of invasive disease events with
insights into decision factors.

Breast cancer 
biomarker discovery

Biomarker 
identification

Rajpal et al.[97]: Biomarker discovery using methylation data with clear 
understanding of utilized biomarkers.

Grad-CAM uses the gradients of any target concept 
(say, “malignant” or “benign”) flowing into the final 
convolutional layer to produce a coarse localization 
map highlighting the important regions in the image for 
predicting the concept. For breast cancer, Grad-CAM can 
visually demonstrate areas in an image critical for the 
model’s decision, such as highlighting regions of a tumor 
suspected to have higher malignancy potential.

DeepLIFT compares the activation of each neuron to 
its “reference activation” and assigns contribution scores 
according to the difference caused by each feature. In 
breast cancer diagnostics, DeepLIFT can identify not just 
the features (e.g., edges of a lesion in mammography) 
but also specific characteristics of the patient’s genomic 
profile that influence the predictive model.

The interpretability facilitated by these methods not 
only aids clinicians in understanding the AI’s reasoning 
but also assists in validating the AI’s reliability and 
accuracy in clinical applications. This transparency 
is critical for integrating AI tools into routine clinical 
practice, ensuring that they complement traditional 
diagnostic techniques and contribute to more accurate 
and personalized patient care. However, it is important to 
note that the choice of evaluation approach and metrics 
should be guided by the specific needs and constraints 
of the application domain. For instance, in safety-critical 
domains such as healthcare, the fidelity of explanations 
might be prioritized over their interpretability to ensure 
that the explanations accurately represent the decision-
making process of the AI model[101].

Despite the progress made in developing evaluation 
metrics for XAI, there are still challenges that need to be 
addressed. For instance, there is a lack of quantitative 
evaluation metrics for some properties of explanations, 
such as clarity, and for some types of explanations, 
such as example-based methods[98]. The evaluation of 
XAI models often involves a trade-off between different 
properties of explanations, such as interpretability and 

fidelity. Future research should aim to develop evaluation 
metrics that can balance these trade-offs and provide a 
comprehensive assessment of explanation quality.

3.4 Integration into Clinical Workflow
The integration of XAI into the clinical workflow is a 

complex process that requires careful consideration of 
various factors. The successful adoption of XAI in clinical 
settings hinges on addressing these challenges and 
developing strategies for seamless integration and user-
friendly interfaces. One of the primary obstacles is the 
need for high computational power and large datasets 
for training and validating AI models. The management, 
analysis, and interpretation of big data in healthcare 
can be a daunting task, and healthcare providers need 
to be equipped with the appropriate infrastructure to 
handle this data effectively[102]. The integration of AI into 
clinical workflows also requires careful consideration of 
ethical and regulatory issues. The use of patient data 
in AI models raises concerns about patient privacy and 
data security. Regulatory bodies also need to establish 
guidelines for the use of AI in healthcare to ensure that 
these technologies are used responsibly and ethically[103]. 
Despite these challenges, there are several strategies 
that can facilitate the integration of XAI into the clinical 
workflow. One approach is to develop user-friendly 
interfaces that allow clinicians to interact with AI models 
easily. These interfaces should be designed to present AI-
generated insights in a clear and understandable manner, 
enabling clinicians to make informed decisions based on 
these insights.

A process used for AI-based breast cancer detection 
and emphasizes continuous improvement through 
feedback loops and decision points was delineated 
in Figure 1. This detailed portrayal underscores the 
application of advanced technologies and methodologies 
to enhance the accuracy and reliability of breast cancer 
diagnostics. The process initiates with the collection 
of critical diagnostic data such as mammograms, 
ultrasounds, and MRIs. This step is essential as it gathers 
the raw images and data required to detect and diagnose 
breast cancer using AI. Following data collection, the next 
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phase involves preprocessing, which typically includes 
normalization to standardize the data and augmentation 
to artificially expand the dataset. These steps are crucial 
for preparing the data for effective training of AI models 
by enhancing the dataset’s diversity and reducing model 
overfitting. After preprocessing, the data is used to train 
deep learning algorithms. This training process involves 
feeding the data through complex neural network 
architectures that learn to identify patterns and features 
indicative of breast cancer. The effectiveness of this step 
hinges on the quality and variety of the data provided. 
Post-training, the model undergoes a validation phase 
where its performance is rigorously tested against a set 
of clinical data that was not part of the training dataset. 
This step is crucial to ensure that the model performs 
well in real-world scenarios and can generalize beyond 
the training examples. Validated models are then applied 
to make predictions regarding breast cancer presence in 
new, unseen medical images. This step marks the practical 
use of the trained AI in clinical environments, providing 
preliminary diagnoses based on learned patterns. To 
enhance the trustworthiness and transparency of AI 
decisions, XAI methods such as LIME and SHAP are used 
to generate explanations for the AI’s predictions. These 
explanations help clinicians understand why the model 
made a particular decision, highlighting the features or 
factors that most influenced the outcome. Based on the 
AI’s predictions and the accompanying explanations, a 
diagnostic decision is made to determine the presence of 

Figure 1. Process of AI-based breast cancer detection.

«Data»
Breast Cancer Data Collection
(Mammograms, Ultrasounds, MRls)

«Preprocess»
Data Preprocessing
(Normalization, Augmentation)

«Model»
Al Model Validation
(Clinical Data Verification)

«CONDITION»
Valid Accuracy?

«CONDITION»
High Confidence?

«Model»
Al Model Application
(Prediction of Breast Cancer)

«Model»
Al Model Training
(Deep Leaming Algorithms)

«Explain»
Explanation Generation
(using XAl methods like LlME, SHAP)

«Feedback»
Feedback Loop
(Model lmprovement)

«Feedback»
Clinical Feedback
(Doctor's Review)

«Decision»
Diagnostic Decision
(Support Clinical Diagnosis)

«CONDITION»
Matches Clinical Expectations?

breast cancer. This decision supports clinical diagnosis and 
can significantly impact the subsequent treatment plan.

The process includes several feedback mechanisms: (1) 
Post-diagnosis, the outcomes and decisions are reviewed 
by clinicians. This feedback is crucial for assessing the 
practical effectiveness and clinical relevance of the AI 
predictions. (2) Both clinical feedback and ongoing 
performance assessments feed back into the model 
training phase. This continuous improvement loop allows 
for refinements and adjustments to the AI algorithms 
based on real-world outcomes and evolving medical 
knowledge.

At several stages, conditional checks are performed: 
(1) After validation, the model’s accuracy is assessed 
to determine if it meets the required thresholds for 
clinical deployment. (2) The confidence level of the AI’s 
predictions is evaluated. If the confidence is high, the 
process moves forward; if not, adjustments may be 
needed. (3) Finally, the AI’s decisions are compared 
against clinical expectations. If there is a match, the 
process continues smoothly; discrepancies might trigger a 
reevaluation or further refinement of the model.

This comprehensive process not only ensures the 
technical efficacy of AI models in diagnosing breast cancer 
but also integrates clinical insights and validations, making 
AI a valuable partner in the fight against breast cancer.
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4 CHALLENGES AND FUTURE DI- 
RECTIONS

The application of XAI in breast cancer recognition tasks 
has shown promising results, but there are still several 
challenges to overcome and future directions to explore.

One of the main challenges in XAI is the trade-off 
between model interpretability and performance. While 
simpler models are often more interpretable, they may 
not perform as well as more complex models, which 
can be harder to interpret. This trade-off is particularly 
relevant in healthcare, where high performance is crucial 
for patient outcomes, but interpretability is also important 
for gaining the trust of clinicians and patients[104]. Another 
challenge is the lack of standardized evaluation metrics for 
explanations. While several metrics have been proposed, 
there is no consensus on which metrics are the most 
appropriate for evaluating the quality of explanations. This 
makes it difficult to compare different XAI methods and 
to assess their effectiveness[105]. The integration of XAI 
into clinical workflows poses its own set of challenges. 
These include technical challenges, such as the need 
for high computational power and large datasets, as 
well as ethical and regulatory challenges related to 
patient privacy and data security[102,103]. Despite these 
challenges, there are several promising directions for 
future research in XAI for breast cancer recognition. One 
direction is the development of new methods that can 
provide high-quality explanations without sacrificing model 
performance. This could involve the use of hybrid models 
that combine the strengths of different types of models, 
or the development of new techniques for generating 
explanations[104]. Another direction is the development 
of standardized evaluation metrics for explanations. 
This could involve the establishment of benchmarks for 
different types of explanations, or the development of new 
metrics that can capture the quality of explanations more 
accurately[105]. Finally, there is a need for more research 
on the integration of XAI into clinical workflows. This could 
involve the development of user-friendly interfaces for 
interacting with AI models, or the exploration of strategies 
for integrating AI into existing clinical workflows in a 
way that complements rather than replaces the work of 
clinicians[102,103].

5 CONCLUSION
This mini-review has explored the applications of 

XAI in various breast cancer recognition tasks, such as 
classification and segmentation. We have discussed the 
importance of XAI in enhancing the interpretability of 
DeepSHAP, which is crucial for gaining the trust of clinicians 
and patients. We have also highlighted the challenges in 
adopting XAI methods in clinical settings, including the 
trade-off between model interpretability and performance, 
the lack of standardized evaluation metrics for explanations, 
and the technical, ethical, and regulatory challenges related 

to the integration of XAI into clinical workflows. Despite 
these challenges, we have identified several promising 
directions for future research, including the development 
of new XAI methods, the standardization of evaluation 
metrics, and the integration of XAI into clinical workflows.

The application of XAI methods in breast cancer 
recognition has the potential to significantly impact the 
management of breast cancer. By providing interpretable 
explanations for their predictions, XAI methods can help 
clinicians to make more informed decisions about diagnosis 
and treatment. This can lead to improved patient outcomes, 
as well as increased trust in AI technologies among 
clinicians and patients. The integration of XAI into clinical 
workflows can improve the efficiency of clinical processes, 
freeing up clinicians to focus on more complex aspects of 
patient care.

Despite the progress that has been made in the field 
of XAI, there is still much work to be done. Continued 
research and development in XAI techniques is crucial 
for addressing the existing challenges and realizing the 
full potential of XAI in breast cancer recognition. This 
includes the development of new XAI methods that can 
provide high-quality explanations without sacrificing model 
performance, the establishment of standardized evaluation 
metrics for explanations, and the exploration of strategies 
for integrating XAI into clinical workflows. By advancing our 
understanding and capabilities in XAI, we can pave the way 
for more effective and trustworthy AI applications in breast 
cancer recognition and beyond.

The XAI methods have shown promise in enhancing 
the interpretability and trustworthiness of AI models 
in breast cancer recognition. By providing insights into 
the decision-making process of these models, XAI 
methods can empower clinicians to make more informed 
decisions and improve patient outcomes. The continued 
development and refinement of XAI techniques have the 
potential to revolutionize the way AI-based diagnostic 
tools are employed in breast cancer management. 
Further research should focus on the development 
of domain-specific XAI techniques, the evaluation of 
explanation quality, and the seamless integration of XAI 
methods into the clinical workflow to maximize their 
impact on patient care.
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Abbreviation List
AI, Artificial intelligence
BRCA, Breast invasive carcinoma
CNNs, Convolutional neural networks
DBT, Digital breast tomosynthesis
DeepSHAP, Deep shapley additive explanations
Grad-CAM, Gradient-weighted class activation mapping
LIME, Local interpretable model-agnostic explanations
MRI, Magnetic resonance imaging
SHAP, Shapley additive explanations
XAI, Explainable AI
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