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Abstract
Objective: Ovarian cancer is closely related to human metabolism, but the causal 
effect of serum metabolites on its occurrence and development is still unknown. 

Methods: Based on the publicly available Genome-Wide Association Studies (GWAS) 
abstract data set, this study used two-sample Mendelian randomization (MR) to 
determine the causal metabolites associated with ovarian cancer, and a comprehensive 
sensitivity analysis was used to verify the accuracy of the results. Finally, the metabolic 
pathway analysis of the causal metabolites that may affect the risk of ovarian cancer 
was carried out. 

Results: Based on the summary level of the GWAS data set, the MR method was 
first used to identify 17 metabolites that are highly correlated with the risk of ovarian 
cancer, 16 of which are related to ovarian cancer subtypes. Further sensitivity analysis 
excluded the influence of heterogeneity and horizontal pleiotropy, and confirmed the 
causal effects of 9 metabolites. Metabolic pathway analysis shows that tryptophan 
metabolic pathway may play a key role in invasive epithelial ovarian cancer, alanine, 
aspartic acid and glutamate metabolism, citrate cycle, glyoxylic acid and dicarboxylate 
Metabolism is closely related to mucinous ovarian cancer, and caffeine metabolism can 
affect the occurrence and development of low-grade potential ovarian cancer. 

Conclusion: This study comprehensively assessed the influence of blood 
metabolites on the risk of ovarian cancer and its different subtypes through genetic 
methods.
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1 INTRODUCTION
Ovarian cancer (OC) is the second most common cause 

of death among gynecologic cancers worldwide[1]. Common 
symptoms of OC encompass bloating, pelvic pain, abdominal 
swelling, and diminished appetite. The prognosis for OC is 
predominantly unfavorable, largely because its early stages 
often go undetected due to the absence of pronounced 
early symptoms and the lack of established screening tests. 
The precise cause of OC remains elusive, with potential 
risk factors being the timing of ovulation, age, hormonal 
influences, and genetic predispositions[2]. Of these, epithelial 
OC accounts for 85%-90% of OCs, and only few risk 
factors associated with epithelial OC have been identified in 
previous observational epidemiologic studies, and most of 
the previous studies did not perform subgroup analyses[3]. 
Subgroup analysis is essential in clinically diverse histotypes, 
and previous analyses have reported heterogeneity in the 
association of risk factors with subgroups[4-6]. Furthermore, 
it is unclear whether the reported risk factors have a causal 
effect on OC, given that traditional observational designs are 
susceptible to residual confounding and reverse causation[7].

Metabolites play a very important role in cellular functions 
as products and substrates in metabolic pathways, including 
cell proliferation and apoptosis, which are closely related to 
cancer development and progression. Previous studies have 
performed a series of metabolomic studies on OC using 
different techniques. One study that analyzed serum from OC 
patients identified pentyl glucuronide as a potential biomarker 
for OC[8]. Another study utilizing H nuclear magnetic reson- 
ance spectroscopy showed significantly elevated levels of 
metabolites such as acetoacetate, acetone and 3-hydro- 
xybutyrate in OC patients[9]. Traditional clinical studies 
have difficulty establishing a causal relationship between 
blood metabolites and OC due to unavoidable confounding 
factors. In recent years, numerous studies have combined 
metabolomics with high-throughput genotyping to estimate 
the effects of genetic variants on metabolic phenotypes 
through Genome-Wide Association Studies (GWAS) and 
identified thousands of genetic loci associated with metabolic 
phenotypes[10,11]. Recently, Mendelian randomization (MR) 
based on large GWAS datasets has proven to be a powerful 
tool for assessing the etiology of complex diseases, as they 
can effectively control for unknown confounders[12,13]. There 
are still no studies that comprehensively assess the causal 
role of metabolic profiling on OC risk.

In this paper, we systematically assessed the causal 
relationship between blood metabolites and invasive 
epithelial OC (IEOC) in conjunction with large-scale 
summary statistics from previous GWAS[14], and explored 
common metabolic mechanisms among different OC types. 
Specifically, the study performed a comprehensive two-
sample MR analysis to explore the causative metabolites of 
OC and its different subtypes. The biological functions of the 
identified pathogenic metabolites were further determined 
by metabolic pathway analysis.

2 MATERIALS AND METHODS
2.1 Data

In this study, we utilized the most comprehensive GWAS 
summary statistics on human blood metabolite profiles, 
obtained from the Metabolomics GWAS server (http://
metabolomics.helmholtz-muenchen.de/gwas/)[10]. After 
stringent quality control, the dataset comprised association 
analyses for 486 metabolites (309 known) based on SNP 
data from 7,824 European individuals. Since the biological 
functions of the unknown metabolites are not yet clear, we 
focused on the causal relationships between the 309 known 
metabolites and OC. These metabolites are categorized 
into 60 subclasses and 8 major groups, as defined by the 
KEGG pathway. GWAS summary statistics, including effect 
size, standard error, and sample size, are available for 
approximately 2.1 million SNPs.

We obtained GWAS summary statistics for OC from 
the OC Association Consortium (OCAC), encompassing 
25,509 women with IEOC and 40,941 controls of European 
ancestry[15]. The dataset includes 22,406 IEOC cases and 
covers histologic subtypes such as high-grade serous 
carcinoma (n=13,037), low-grade serous carcinoma 
(n=1,012), mucinous carcinoma (n=1,417), endometrioid 
carcinoma (n=2,810), and clear cell carcinoma (n=1,366). 
Additionally, 3,103 cases of potentially malignant low-grade 
carcinomas were analyzed, comprising 1,954 serous and 
1,149 mucinous carcinomas. All OCAC studies had ethical 
approval, and participants provided written informed consent. 
Data sources and additional details are outlined in Table 1.

2.2 Selection of Instrumental Variables
Consistent with previous studies, this paper utilized 

the clumping program of PLINK software and selected 
instrumental variables for each metabolite with a loose 
significance threshold[16,17]. Specifically, the clump function 
used the 1,000 Genomes Project as the reference dataset[18],  
the significance threshold was set to 1E-5, the chain dis- 
equilibrium r2 threshold was 0.1, and the window was set 
to 500KB, consistent with previous studies[19,20]. A total of 
3 to 631 independent SNPs were selected as instrumental 
variables for 309 metabolites, with one metabolite having 
no significant loci. For the reverse MR analysis on OC, 
instrumental variable selection followed a similar process, 
with a significance threshold of 5×10−8. To ensure SNP 
strength, we calculated the proportion of phenotypic 
variance explained (PVE) and F-statistics, excluding those 
with F-statistics below 10. Additionally, SNPs strongly 
associated with outcomes (P<0.05 after correction), 
with abnormal effect sizes, or in MHC regions were also 
removed.

2.3 Statistical Analysis
To assess the causal effect of potentially pathogenic 

metabolites on OC, we conducted a two-sample MR analysis. 
Heterogeneity was evaluated using Cochran’s Q statistic, 
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Table 1. Detailed information of GWAS summary data 

Traits Year
Sample Size

SNPs PMID
Case/Control

Blood Metabolites 2014 7,824 2,545,661 24816252

Invasive epithelial ovarian cancer (IEOC) 2017 22,406/40,941 18,549,275 28346442

High grade plasma (HGS) 13,307/40,941 18,549,275

Low grade plasma (LGS) 1,012/40,941 18,549,275

Mucinous (MS) 1,417/40,941 18,549,275

Endometrial 2,810/40,941 18,549,275

Clear cell (CC) 1,366/40,941 18,549,275

Low potential malignancy (LMP) 3,103/40,941 18,549,275

with random-effects IVW applied when the null hypothesis 
was rejected, and fixed-effects otherwise[21]. Given multiple 
comparisons, metabolites with P<0.007 (0.05/7) were 
deemed causal for OC, while those between 0.05 and 0.007 
indicated potential causality. Sensitivity analyses-including 
the weighted median method[22], maximum likelihood 
method[23], and MR-Egger regression[24] were used to control 
for horizontal pleiotropy. Additionally, LOO analysis and MR-
PRESSO were performed to detect outliers due to horizontal 
pleiotropy[25]. To exclude potential bidirectional associations, 
reverse MR analysis was also conducted to estimate OC’s 
causal impact on the identified metabolites.

To explore the functions and pathways of the identified 
metabolites, MetaboAnalyst 4.0 (https://www.metaboanalyst.
ca/)[26] was used in this paper to perform metabolic pathway 
analysis of 18 metabolites causally associated with IEOC and 
to reveal the possible pathways of metabolites enriched for 
different subtypes of IEOC, respectively. The pathway analysis 
tool uses high-quality KEGG[27] and Small Molecule Pathway 
Database (SMPDB) metabolic pathways[28] as the back-end 
knowledge base and integrates powerful pathway enrichment 
analysis and pathway topology analysis. The significance level 
of metabolic pathways was set at 0.05.

Statistical analyses were performed in R 3.5.3 software, 
MR analysis was performed using the MR package[29] 
and MR-PRESSO was performed using the MR-PRESSO 
package[30].

3 RESULTS
3.1 Causal Effects of Potentially Pathogenic 
Metabolites on OC and its Subtypes were 
Examined by MR analysis

To explore the causal effects of metabolites on OC, we 
assessed the causal effects among 486 metabolites using 
the IVW method (Figure 1). The instrumental variables 
selected all had F-statistics greater than 10, which can be 
considered as strong instrumental variables. The results 
revealed that 18 metabolites were associated with IEOC 
(P<0.05). Among them, seven metabolites belonged to the 
lipid pathway, eight to the amino acid pathway, one to the 

peptide pathway, one to the xenobiotic pathway and one to 
the carbohydrate pathway. Under a strict significance level 
(P<0.05/7=0.007), 2 metabolites remained significant, 
C-glycosyltryptophan (risk ratio (OR)=3.510, P=0.002) and 
indoleacetic acid (OR=0.610, P=0.005). In the results of OC 
subtypes, C-glycosyltryptophan was found to be a potential 
risk factor for highly plasma (OR=2.593, P=0.047), mucinous 
(OR=18.107, P=0.017), and low-grade potentially malignant 
(OR=12.102, P=0.005) cancers. There was a negative 
causal relationship between indoleacetic acid and highly 
plasma carcinoma (OR=0.600, P=0.014) as well as clear 
cell carcinoma (OR=0.312, P=0.032). Results for different 
OC subtypes showed that 15 relevant causal metabolites 
were identified after Bonferroni (P<0.007) correction. There 
were causal associations between 2 of the metabolites and 
low-grade plasmacytoid carcinoma, where mannitol was 
a protective factor for low-grade plasmacytoid carcinoma 
(OR=0.122, P=6.85×10-4) while bile acids were a risk 
factor (OR=2.132, P=0.004). For causality with hyperplasia, 
three metabolites are causally involved (1-methylxanthine, 
nonanoyl carnitine, and palmitoleate (16:1n7, respectively), 
where 1-methylxanthine was a protective factor for highly 
plasma carcinoma (OR=0.647, P=0.003) while nonanoyl 
carnitine and palmitoleate (16:1n7) were risk factors (ORs 
of 1.34, P=0.003 and 1.969, P=0.005). Mucinous OC 
results showed that glutamyl tyrosine reduced the risk of OC 
(OR=0.151, P=0.004), while 4-acetylaminophenol sulphate 
(OR=1.079, P=0.005) as well as ADpSGEGDFXAEGGGVR 
(OR=3.705, P=0.005) increased its risk. Mannose, palmitoyl 
carnitine and 1-methyluronate were all protective factors 
for low-grade malignant potential OC with ORs of 0.28 
(P=5.58E-4), 0.221 (P=0.004) and 0.521 (P=0.005), 
respectively. Finally, five causal metabolites were causally 
associated with endometrioid OC, with arachidonic acid 
(20:4n6) (OR=0.238, P=2.93×10-4) and inosine (OR=0.647, 
P=0.007) as protective factors, while 3-(3-hydroxyphenyl) 
propionate (OR=1.442, P=0.004), 1,5-anhydroglucosol 
(1,5-AG) (OR=2.442, P=0.004), and C-glycosyltryptophan 
(OR=12.102, P=0.005) were risk factors.

In this paper, multiple sensitivity analyses were further 
performed on the identified causal associations (Table 2), 
which showed that the sensitivity analyses for most of 
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Figure 1. Causal Effects of Metabolites with Ovarian Cancer and its Subtypes. IEOC: invasive epithelial ovarian cancer; 
HGS, High grade plasma; LGS, Low grade plasma; MS, Mucinous; CC, Clear cell; LMP, Low potential malignancy

the metabolites were in agreement with the IVW results.
The intercept term of the MR-Egger test showed horizontal 
pleiotropy for the associations of two metabolites with OC: 

C-glycosyltryptophan with IEOC, and 1-methylxanthine with 
high plasmaticity, respectively. The association between 
C-glycosyltryptophan and IEOC was further assessed using 
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Table 2. Sensitivity Analysis of Association of Causal Metabolites with Ovarian Cancer (PIVW < 0.007)

Traits Metabolites SNP
heterogen- 
eity Test

P

IVW Weighted Median MR-Egger
OR

(95%CI)
P

OR
(95%CI)

P OR (95%CI) P Intercept P

IEOC C-glycosyl- 
tryptophan

18 0.315 3.51
(1.589, 7.754)

0.002 5.724
(1.644, 19.927)

0.006 0.669
(0.126, 3.554)

0.637 0.022 0.033

IEOC Indoleacetic acid 
ester

22 0.112 0.61
(0.433, 0.86)

0.005 0.652
(0.394, 1.076)

0.094 0.645
(0.311, 1.338)

0.253 -0.001 0.857

Endom- 
etrial

C-Glycosyl- 
tryptophan

18 0.393 12.102
(2.162, 67.727)

0.005 4.318
(0.304, 61.261)

0.280 1.441
(0.038, 54.866)

0.846 0.029 0.211

HGS Nonyl carnitine 22 0.148 1.34
(1.103, 1.627)

0.003 1.488
(1.067, 2.074)

0.019 1.318
(0.843, 2.061)

0.240 0.001 0.934

Endom- 
etrial

3-(3-Hydroxyphenyl) 
propionate

11 0.849 1.442
(1.126, 1.847)

0.004 1.581
(1.069, 2.338)

0.022 1.384
(0.866, 2.211)

0.174 0.004 0.838

CC Betaine 24 0.619 0.175
(0.049, 0.616)

0.007 0.078
(0.011, 0.551)

0.011 0.215
(0.01, 4.746)

0.330 -0.004 0.885

Endom- 
etrial

1,5-Anhydro- 
glucitol (1,5-AG)

41 0.837 2.442
(1.328, 4.491)

0.004 1.752
(0.701, 4.379)

0.230 1.541
(0.347, 6.852)

0.570 0.009 0.508

HGS Palmitoleate 
(16:1n7)

10 0.798 1.969
(1.228, 3.159)

0.005 1.778
(0.945, 3.347)

0.074 1.472
(0.51, 4.251)

0.475 0.008 0.548

Endom- 
etriotic

Arachidonic acid 
(20:4n6)

26 0.219 0.238
(0.109, 0.517)

0.000 0.81
(0.211, 3.112)

0.758 0.109
(0.025, 0.468)

0.006 0.017 0.210

Endom- 
etriotic

Inosine 10 0.493 0.647
(0.473, 0.886)

0.007 0.582
(0.383, 0.883)

0.011 0.497
(0.176, 1.41)

0.225 0.021 0.617

MS Gamma-glutamyl 
tyrosine

45 0.478 0.151
(0.042, 0.547)

0.004 0.136
(0.02, 0.918)

0.041 0.016
(0, 0.984)

0.054 0.024 0.266

LMP Cholate 9 0.212 2.132
(1.279, 3.556)

0.004 2.183
(1.011, 4.712)

0.047 1.615
(0.356, 7.329)

0.554 0.022 0.704

LMP Mannose 26 0.084 0.122
(0.036, 0.41)

0.001 0.08
(0.01, 0.626)

0.016 0.037
(0.002, 0.757)

0.043 0.029 0.384

LMP Mannose 26 0.420 0.28
(0.136, 0.577)

0.001 0.338
(0.103, 1.109)

0.073 0.396
(0.085, 1.848)

0.250 -0.008 0.622

HGS 1-Methylxanthine 14 0.254 0.647
(0.486, 0.861)

0.003 0.657
(0.378, 1.14)

0.135 0.383
(0.226, 0.651)

0.002 0.021 0.031

LMP 1-Methyluric acid 
ester

14 0.169 0.521
(0.329, 0.825)

0.005 0.596
(0.264, 1.347)

0.214 0.45
(0.187, 1.086)

0.099 0.008 0.684

LMP Palmitoyl carnitine 9 0.713 0.221
(0.08, 0.61)

0.004 0.24
(0.061, 0.95)

0.042 0.368
(0.041, 3.333)

0.374 -0.013 0.609

MS 4-Acetaminophen 
Sulfate

23 0.728 1.079
(1.024, 1.138)

0.005 1.066
(0.988, 1.151)

0.097 1.036
(0.899, 1.192)

0.627 0.021 0.535

MS ADpSGEGDFXAE 
GGGVR

7 0.150 3.705
(1.49, 9.216)

0.005 2.894
(0.766, 10.928)

0.117 0.221
(0.013, 3.662)

0.333 0.118 0.082

MR-PRESSO, and the results were consistent with the IVW 
results (OR=3.510, 95% CI=1.510-8.155, P=0.010). One 
instrumental variable had a strong correlation with outcome 
(Z=-2.574, P=0.010), and horizontal pleiotropy disappeared 
when this SNP was excluded (P intercept=0.074). The 
association between 1-methylxanthine and high plasmaticity 
was similarly assessed using MR-PRESSO (OR=0.647, 
95% CI=0.472 to 0.887, P=0.017). One instrumental 
variable was strongly associated with outcome (Z=-
2.768, P=0.006), and horizontal pleiotropy remained after 
excluding this SNP (P intercept=0.020). Further results of 
weighted median analysis revealed that nine metabolites 
were still causally associated with OC and its subtypes and 
were not affected by horizontal pleiotropy, so they could be 
considered as the final causal metabolites. Finally, reverse 
MR analysis ruled out the possibility of a causal effect of OC 
on the metabolites.

3.2 Metabolic Pathway Analysis
In order to explore the relationship between metabolites 

and OC in a comprehensive manner, this study further 
performed metabolic pathway analysis of the causal 
metabolites identified by MR for OC and its subtypes 
(Table 3). For IEOC, we detected the tryptophan metabolic 
pathway belonging to both KEGG and SMPDB (P=0.038). 
Three significant pathways were found in mucinous OC: 
alanine, aspartate and glutamate metabolism (P=0.001), 
citrate cycle (TCA cycle) (P=0.010), and glyoxylate and 
dicarboxylate metabolism (P=0.024). Finally, an important 
role of caffeine metabolic pathway was detected in low 
malignant potential (P=0.002). 

3.3 Validation of Identified Metabolites
We extracted data from another metabolite GWAS to 

https://doi.org/10.53964/cme.2024013
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Table 3. Metabolic Pathway Analysis of Causal Metabolites

Subgroups Pathway Name P Impact Details

IEOC Tryptophan metabolism 0.038 0.094 KEGG SMP

MS Alanine, aspartate and glutamate metabolism 0.001 0.000 KEGG SMP SMP SMP

MS Citrate cycle (TCA cycle) 0.010 0.137 KEGG SMP

MS Glyoxylate and dicarboxylate metabolism 0.024 0.032 KEGG

LMP Caffeine metabolism 0.002 0.308 KEGG SMP

verify the identified metabolites, and the results are shown 
in Figure 2. The results showed that C-Glycosyltryptophan 
was consistent with the discovery set, and elevated 
metabolite levels increased the risk of IEOC (OR=1.064, 
P=0.016). Although no proteFctive effect of Mannose was 
found on LGS and LMP, the validation set found that it had 
a protective effect on MS (OR = 0.814, P=0.049). The 
significant causal association between Cholate and LMP, 
inosine and Endometrioid, and 1-methylxanthine and HGS 
was also confirmed (P<0.05); the association between 
4-Acetaminophen Sulfate and MS was not found in the 
validation set (P>0.05).

4 DISCUSSION
To date, this is the first study to integrate large-scale 

GWAS summary datasets to systematically reveal the 
mechanisms of metabolites on OC development from a 
genetic perspective. This study provides strong evidence 
that blood metabolites can influence OC risk through 
an integrated genetic approach based on large GWAS 
pooled data. Utilizing SNPs as instrumental variables, 
the integration of multiple two-sample MR methods 
demonstrated nine causal metabolites associated with OC 
risk, including C-glycosyltryptophan, nonanoyl carnitine, 
3-(3-hydroxyphenyl) propionate, betaine, inosine, γ-glutamyl 
tyrosine, cholate, mannose, and palmitoyl carnitine. A 
variety of metabolites may be potentially associated with 
OC development. KEGG and SMPDB pathway analyses 
demonstrated that metabolic pathways such as caffeine 
metabolism, biosynthesis of valine, leucine, and isoleucine, 
aminoacyl-tRNA biosynthesis, and tryptophan metabolism 
may play key roles in the metabolism of OC or its subtypes. 
In addition, the association between 1-methylxanthine and 

Figure 2. Validation of Causal Associations Between Identified Metabolites with Ovarian Cancer and its Subtypes. 

high plasmaticity may be affected by horizontal pleiotropy 
and therefore was not considered in this study at this time.

This finding underscores the potential of integrating 
metabolomic biomarkers into existing clinical tools, which 
could enable more precise risk stratification and personalized 
treatment planning[31]. This finding underscores the potential 
of integrating metabolomic biomarkers into existing clinical 
tools, which could enable more precise risk stratification 
and personalized treatment planning. The identification 
of pseudouridine and triglycerides as novel risk factors for 
OC offers further insights into disease mechanisms[32]. The 
association between elevated pseudouridine levels and high-
grade serous tumors highlights its potential as a biomarker 
for identifying aggressive OC types. Clinically, pseudouridine’s 
role in translational fidelity and its presence in tumor-
specific splicing could inform targeted therapeutic strategies, 
particularly in the management of rapidly progressing 
OC[32]. An MR study identified 31 metabolites with significant 
causal effects on OC, including Androsterone sulfate and 
Propionylcarnitine, which promote OC, and X-12,093 and 
Octanoylcarnitine, which are protective. These findings 
suggest potential biomarkers for clinical validation, though OC 
subtypes were not differentiated[33], which did not consider 
differences between different OC subtypes.

Studies have shown that abnormalities in glycosylation 
are involved in the pathophysiology of malignant tumors, 
and compounds that are glycosylated are used as potential 
biomarkers for the early detection of disease, as well as for 
assessing the efficacy of therapies for cancer, diabetes, and 
other diseases[34]. Our study’s findings align with this body of 
work, particularly the involvement of C-glycosyltryptophan 
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in the tryptophan metabolic pathway. Given its connection to 
immune evasion via indoleamine 2,3-dioxygenase, targeting 
this pathway could bolster immune response and offer new 
therapeutic avenues[35]. These metabolites, especially those 
linked with immune modulation, provide promising targets 
for therapeutic interventions aimed at reactivating immune 
responses against OC cells. Regarding methylxanthines, 
our discovery of their protective effect against OC aligns 
with the observed anticancer properties of coffee and other 
sources rich in antioxidants[36]. This suggests that dietary 
interventions involving methylxanthine-rich foods could serve 
as supplementary preventive strategies for OC, a concept 
supported by existing evidence associating decaffeinated 
coffee with reduced OC risk[37]. Despite no significant 
association between nonylcarnitine and high-risk OC in our 
study, the documented role of carnitine metabolism in OC 
progression warrants further exploration. Given carnitine 
palmitoyltransferase’s role in fatty acid metabolism, targeting 
this pathway could impede OC development, particularly 
in high-grade cases where metabolic reprogramming is 
pronounced[38,39]. Furthermore, existing studies suggest 
that targeting palmitoylcarnitine could leverage its ability to 
induce oxidative stress in cancer cells, providing a possible 
adjunctive treatment avenue[40,41]. Finally, the findings 
regarding mannose highlight its therapeutic potential. As an 
oral supplement, mannose’s ability to modulate the AKT and 
ERK1/2 pathways could be leveraged to slow OC progression, 
especially in combination with standard therapies[42]. 
Clinically, mannose supplementation could be explored as an 
adjunctive strategy to enhance the efficacy of conventional 
treatments.

Protective metabolites like arachidonic acid and inosine 
suggest pathways for resisting oncogenesis. Arachidonic 
acid's role in inflammation and cell signaling hints at using 
inflammation modulation as a preventive strategy for OC[43], 
despite past findings that AA and its metabolites promote 
cancer[44-46]. Similarly, inosine’s immunomodulatory properties 
open avenues for enhancing immune targeting of neoplastic 
cells[47]. Conversely, metabolites such as 3-(3-Hydroxyphenyl) 
propionate, 1,5-anhydroglucosol, and C-glycosyltryptophan 
emerge as risk factors, highlighting metabolic vulnerabilities 
to cancer. The association of 3-(3-Hydroxyphenyl) propionate 
with cancer risk may point to gut microbiota's role in 
oncogenesis, while 1,5-AG links metabolic health to OC, 
supporting metabolic interventions as prevention. Although 
specific links between these metabolites and OC are not 
well-studied, 1,5-AG has been associated with cancer 
mortality risks related to glucose levels[48]. The presence 
of C-glycosyltryptophan in OC patients suggests an amino 
acid metabolism role in cancer progression[49]. This study 
using UPLC to measure plasma C-glycosyltryptophan found 
that plasma CMW was significantly higher in patients with 
malignant or borderline OC than in the benign tumor group 
and normal controls[49].

Notably, there were causal associations between some 
metabolites and multiple OC subtypes, e.g., indoleacetate 

was a protective factor for IEOC, HGS and CC subtypes; and 
the metabolite C-Glycosyltryptophan was a risk factor for 
IEOC, HGS, LGS and Endometriotic. These results provide 
some evidence for OC prevention and treatment.

There exist limitations in our research. This study needs 
further clinical trials to confirm the new findings in the study, 
e.g., there is no report of nonanoyl carnitine associated with 
cancer metabolism so far. Further validation by biofunctional 
assays is also needed, which is beyond the scope of this 
study. In addition, due to the effective sample size of the 
metabolite database, the use of a more relaxed significance 
threshold in this study aimed to identify more metabolites 
that may be related to the mechanism of OC development 
and to fully elucidate the pathway of metabolite action on 
OC. Due to the lack of individual data, further stratification 
of the population (e.g., age, BMI, etc.) was not possible 
to investigate the effect of metabolite levels on OC risk in 
different populations. After searching the GWAS catalog 
and PubMed, the current GWAS of subtype data is very 
limited, and we cannot obtain metabolomic studies based 
on individual data. The OC data we currently use is still the 
largest GWAS study with the largest sample size. Therefore, 
we cannot perform a valid verification here. Since no 
significant causal metabolites were found after multiple 
correction, we chose a slightly stricter significance level 
(P<0.05/7) to report the results and verified the stability of 
the results based on multiple sensitivity analyses. However, 
it is worth noting that using a loose significance level will 
lead to certain false positives. In addition, due to the limited 
statistical power of GWAS at the metabolite level, we chose a 
more common threshold for instrumental variable screening, 
which may also increase false positives. Therefore, other 
studies need to be more cautious when drawing conclusions.

In summary, alterations in the levels of metabolites such 
as lipid metabolism and amino acid metabolism play an 
important role in the development of OC. This study explores 
causal metabolites of OC and its subtypes at the gene level 
based on a large publicly available GWAS public dataset, 
which will provide a new perspective for further OC etiology 
studies and help people to make early interventions to reduce 
the risk of OC.
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