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Abstract

This study addresses the logistical challenges of testing bentonite plastic concrete 
in the field by developing predictive models for compressive strength (CS) using 
Python-based machine learning techniques. The models, including random 
forest, adaptive boosting, extreme gradient boosting, and gradient boosting 
regression tree, were enhanced with forensic-based investigation optimization. 
A dataset of 285 CS records was used to train and validate these models. SHAP 
analysis highlighted the impact of various inputs like gravel, bentonite, curing 
time, and cement on CS. Results show that the GBRT-FBIO model outperformed 
the others in CS prediction, indicating its superior effectiveness for material 
science applications.
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1 INTRODUCTION
Waste management is a critical global challenge 

as industries and societies push toward sustainability. 
One of the key issues in this domain is heavy metal 
contamination in wastewater which arises from various 
industrial processes, including mining, electroplating, and 
metal refining[1]. Heavy metals such as chromium (Cr), 
mercury (Hg), copper (Cu), lead (Pb), cadmium (Cd), zinc 
(Zn), and nickel (Ni) pose significant ecological hazards 
because they do not degrade and tend to bioaccumulate 
in organisms, causing severe health and environmental 
issues[2,3].Traditional methods for treating wastewater, 
such as chemical precipitation and ion exchange, can 
be costly and sometimes ineffective at removing trace 
levels of heavy metals. Adsorption, especially using clay 

minerals, has emerged as an efficient and economical 
method for removing these pollutants[4].

Bentonite, a clay composed primarily of montmorillo- 
nite, has proven to be particularly effective for heavy 
metal adsorption due to its large surface area, high cation 
exchange capacity, low cost, and non-toxic nature[5,6]. 
Several studies have demonstrated the potential of 
bentonite for removing heavy metals from water[7,8]. The 
combination of bentonite with concrete, forming what 
is known as bentonite plastic concrete (BPC), enhances 
the material’s properties for environmental engineering 
applications. Specifically, BPC is valued for its low 
permeability, which makes it ideal for use in structures like 
dam cutoff walls to prevent water seepage[9]. Research 
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has shown that BPC can absorb water and expand, 
contributing to its effective performance in limiting 
seepage and increasing the longevity of engineering 
structures[10].

BPC has seen widespread use in projects where 
controlling seepage is crucial, such as dam construction, 
where it reduces the risk of structural failure caused by 
internal water pressure and soil movement[11]. Despite its 
advantages, the preparation, testing, and optimization 
of BPC mixtures are labor-intensive and costly, often 
requiring specialized equipment and skilled personnel. 
These factors drive the need for computational models 
that can predict the material’s behavior, particularly its 
compressive strength (CS), without relying on extensive 
physical testing[12].

Recent advances in machine learning (ML) and artificial 
intelligence (AI) have opened up new possibilities for 
material property prediction. ML techniques such as 
artificial neural networks (ANN), support vector machines 
(SVM), and ensemble learning methods like gradient 
boosting regression tree (GBRT) and random forest 
(RF) have demonstrated superior accuracy in predicting 
concrete properties compared to traditional regression-
based methods[13-15]. These methods can model complex, 
non-linear relationships between input variables, 
providing precise predictions without requiring large-scale 
experimental data[16,17]. For BPC, previous studies have 
applied various ML techniques to predict key properties 
such as slump, elastic modulus, and CS. For instance, 
Tavana Amlashi et al.[18] found that ANN models were more 
accurate than conventional methods for predicting the 
mechanical properties of BPC, while Ghanizadeh et al.[14]  
demonstrated that SVM and ANN could effectively predict 
CS, with cement content and silty clay showing the 
greatest and least influence, respectively, on the material’s 
performance.

In more recent work, hybrid AI models, such as 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 
optimized with Particle Swarm Optimization, have been 
shown to outperform standalone models, achieving high 
accuracy in predicting the CS and tensile strength of plastic 
concretes[19]. Similarly, other computational techniques, 
including response surface methodology (RSM), multigene 
genetic programming (MGGP), and the group method of 
data handling (GMDH), have also been employed to model 
the mechanical properties of BPC using input parameters 
such as water content, bentonite, cement, sand, gravel, 
and curing time[20]. Ensemble learning models, which 
combine the predictions of multiple base learners to 
improve performance, are particularly promising for this 
task. Algorithms such as GBRT, extreme gradient boosting 
(XGB), and RF have shown notable success in predicting the 
mechanical properties of various concrete types, including 
high-performance concrete (HPC), recycled aggregate 

concrete (RAC), and geopolymer concrete (GPC)[21,22].

One of the limitations in existing studies is the lack of 
robustness in these ML models when applied to diverse 
datasets, as well as insufficient attention to meta-
parameter optimization, which is crucial for improving 
model performance[23]. Tuning meta-parameters in 
ensemble learning (EL) models, including the number of 
estimators, learning rate, and tree depth, can significantly 
impact the accuracy and generalizability of predictions. 
Recognizing this gap, recent work has proposed various 
metaheuristic optimization techniques to address the 
challenges of manual parameter selection[24,25]. Among 
these, the forensic-based investigation optimization 
(FBIO) algorithm has emerged as an effective tool for 
fine-tuning the meta-parameters of ML models, ensuring 
that ensemble methods such as boosting and bagging 
achieve their full predictive potential[26]. FBIO mimics the 
process of forensic investigations, iteratively narrowing 
down the search space to find optimal solutions, 
thus improving model accuracy while reducing the 
computational effort required for parameter tuning[27].

This study seeks to fill the gaps in current research 
by developing a robust ensemble learning framework, 
integrated with FBIO, to predict the compressive strength 
of BPC. By utilizing a comprehensive dataset of 285 CS 
test records and employing advanced machine learning 
techniques such as RF, ADB, GBRT, and XGB, this 
research aims to provide more accurate and generalizable 
models for BPC strength prediction. Additionally, SHapley 
Additive exPlanations (SHAP) are used to interpret 
the influence of input variables on model predictions, 
ensuring transparency and interpretability of the results. 
This approach offers a significant improvement over 
existing methods by reducing the reliance on costly 
experimental testing while enhancing the understanding 
of how various factors-such as gravel content, curing 
time, and cement-affect BPC’s performance.

2 METHODOLOGY 
This study employs several advanced machine learning 

algorithms to predict the compressive strength of BPC. 
ADB, introduced by Schapire[28], is a boosting method 
that combines weak learners iteratively, improving model 
accuracy over time by focusing on misclassified samples[29]. 
Decision trees (DT) and ANN are commonly used within 
this framework due to their versatility in handling both 
regression and classification tasks[30,31]. GBRT, based on 
the classification and regression tree (CART) method[32], 
improves predictions by incorporating poor learners in each 
iteration, reducing forecasting errors[33]. This technique is 
highly effective in improving the accuracy of weak learners, 
particularly in regression applications, making it a suitable 
candidate for predicting the compressive strength of BPC. 
XGB, developed by Chen et al.[34], builds upon the principles 
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of GBRT and offers enhanced speed and performance in 
both classification and regression tasks. XGB is especially 
effective due to its regularization capabilities, which help 
prevent overfitting while optimizing the ensemble tree 
structure. RF, introduced by Svetnik et al[35], is another 
popular ensemble method that constructs multiple 
decision trees using bootstrap samples and averages their 
outcomes. It is valued for its simplicity, speed, and capacity 
to handle large datasets[36]. RF’s out-of-bag (OOB) sampling 
method allows for internal cross-validation, improving 
model accuracy and reducing bias. To further optimize the 
performance of these machine learning models, this study 
integrates FBIO, a metaheuristic approach that adjusts 
iteration values and population sizes without requiring 
predefined internal parameters. FBIO, introduced by Chou 
and Nguyen[37], simulates forensic investigation techniques 
to narrow the search space and find optimal solutions. This 
method is advantageous in fine-tuning the global meta-
parameters of machine learning models, enhancing their 
predictive accuracy in complex tasks such as BPC strength 
prediction[27].

3 RESULTS AND DISCUSSION
3.1 Specifics of Data Gathering

The database employed in this study is made up of 285 
datasets for CS[18,35,38-45]. This comprehensive database 
was collected from 29 published studies. Elwell and Fu[46] 
proposed UNESCO conversion factors to homogenize 
cylindrical and cubic CS values. As effective variables 
for BPC properties, this research examined the following 
variables: contents of gravel, bentonite, silty clay, curing 
time, sand, cement, and water. A lower correlation is 
observed between negative and positive values in the 

overall model variables, as shown in Figure 1. In addition, 
according to the correlation heat map analysis, water, 
cement, gravel, and curing time have a greater positive 
impact on the CS of BPC. In addition, the intended graph 
distribution is not uniform, so the developed models are 
applicable to a wide range of target data[47].

Before modeling, the data were randomly split into 
testing (30%) and training (70%) parts. Table 1 displays 
the statistical characteristics of the output and input 
variables for the testing and training data for CS-BPC. 
A logical and technical range can be developed for each 
of the input variables by considering the minimum and 
maximum for each of the four data sets. In particular, 
these ranges are 0 to 1,060kg/m3 for gravel; 509 to 
1,499kg/m3 for sand; 0 to 380kg/m3 for silty clay; 65 
to 300kg/m3 for cement; 16 to 320kg/m3 for bentonite; 
152 to 520kg/m3 for water; and 7 to 540 days for curing 
time. Tables 1 allows you to identify extreme data points 
(maximum and minimum), data centers (mean and 
median), data spread (standard deviation and variance), 
and distribution shapes (skewness and kurtosis)[47]. 
Moreover, the diversity among databases and the ability 
of models developed on them to generalize are illustrated 
by the diverse alterations observed in each of the 
outputs[12].

3.2 Model efficiency Assessment Specifi- 
cations

Several error metrics were employed to assess the 
accuracy of the models. Among these variables are 
R2, MAE, RMSE, MAPE, a20-index, and OBJ[13]. These 
statistical metrics are summarized as follows:

Figure 1. Coefficients of Pearson Correlation for CS.

Compressive strength
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Table 1. Comprehensive Statistics for Both Testing and Training Data Related to CS-BPC

Compressive 
Strength

Curing 
Time

WaterBentoniteCementSilty ClaySandGravelStatistic

Training data: 199

0.67152.1166505090Minimum

21.754052032030038014991060Maximum

4.266.2330.852.6158.871813.2686.1Mean

3.228340.4401500750750Median

3.39476.636.951.2103.5222.4220.3Standard deviation

11.18,854.45,873.11,363.12,626.510,712.549,486.848,560.1Variance

2.23.7-0.32.80.80.91.5-1.3Skewness

6.815.2-0.3140.2-0.61.31.4Kurtosis

Testing data: 86 

0.87162165005240Minimum

19.15405201682893101,3051,060Maximum

4102.7341.855.6156.391805.3673.5Mean

328340.2491420730750Median

3.2150.778.532.952.9106.5221.1219.4Standard deviation

10.822,729.76,177.91,0842,801.811,358.848,92248,141.3Variance

22.2-0.11.80.60.41.4-1.1Skewness

5.23.6-0.23.6-0.1-1.40.90.9Kurtosis

when N is the number of records, Ypre and Yobs show the 
predicted and actual values, and the bar items over 
the parameters indicate the average rate; The variable 
m20 shows the records quantity where the Yobs/Ypre ratio 
ranges from 0.80 to 1.20; 

3.3 Algorithms for Hybrid Ensemble 
Learners

The FBIO was used in this study to determine the ideal 
values using the given criteria to set the first random 
values (Table 2). After these statistics were entered 
into EL approaches and the EL algorithms were trained 
using the training dataset, the objective function was 
determined to be the average RMSE of both data (test 
and train). Figure 2 provides a summary of the various 
EL-FBIO approaches. Table 3 presents the multiple meta-
parameters values optimized for CS-PC models.

3.4 Model Prediction Accuracy Study
Because of a higher R2-value and fewer scattered 

spots, the GBRT-FBIO approach outperforms conven 
tional CS-BPC models in both phases of test and train, 
as shown in Figure 3. A20-index is a new significant 
engineering parameter that determines how many 
specimens have expected values that are at most 20% 
off from observed values[48]. Furthermore, with an a20-
index of 0.5 and 0.88 throughout the testing and training 
step, the RF- FBIO had the lowest desire to perform well 
for CS-BPC.

Different statistical indicators were evaluated for training 
and testing datasets in order to assess the precision of 
the proposed forecasting models. Table 4 shows what 
the results are for different statistical parameters. In the 
CS-BPC training phase, ADB is 0.14, 0.23, and 0.57MPa 
lower than GBRT, XGB and RF in terms of RMSE, while in 
the testing phase, GBRT outperformed ADB, XGB, and 
RF by 0.46, 0.04, and 0.43MPa of difference in RMSE, 
respectively. Despite the relative superiority of the ADB 
model during training, the GBRT model with MAE and 
MPAE of 0.43 and 0.16 respectively, is the most accurate 
in testing phase. 

The effectiveness of each design was evaluated using 
the diagram of Taylor presented in Figure 4. To compare the 
anticipated outcomes with the actual values, three statistical 
measures of RMSE, STD, and R2) were used. The standard 
deviation is shown through a circle connecting the plot's 
axes of horizontal and vertical; RMSE is indicated by the 
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Figure 2. An Overview of The Modeling Process in This Study.

Table 2. Different Meta-Parameter Ranges Used in The Optimization Process.

Parameters Considered Range Parameters Considered Range

Number of estimators [5, 200] Max_samples [0.1, 1]

Min_samples_split RF: [1, 10]
Other methods: [1e-10, 1]

lu_ns [2, 150]

Min_samples _leaf RF: [1, 10]
Other methods: [1e-10, 1]

lu_max_d [2, 100]

Max_depth [2, 500] lu_max_mlf [2, 100]

Max_features [1, maximum number of variables] lu_lr [0.0001, 1]

Max_ leaf_nodes [2, 500] lu_gamma [0, 10]

Ccp_alpha [0, 1] lu_gamma [0, 10]

Min_weight_fraction_leaf [0, 0.5] lu_min_cw [0, 1]

Learning rate [0.001, 3] lu_subsample [0.5, 1]

Alpha [0.001, 0.99] lu_subsample_bt [0.5, 1]

Subsample [1e-6, 1] reg_lambda [0.01, 2]

https://doi.org/10.53964/id.2024033
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Table 3. Optimized Parameter Values for CS-BPC

Parameters
Models

ADB-FBIO GBRT- FBIO XGB- FBIO RF- FBIO

Number of estimators 198 89 40 10

Min_samples_split 0.004 0.027 - 2

Min_samples _leaf 0.0003 0.008 - 1

Max_depth 500 87 137 395

Max_features 7 6 - 6

Max_ leaf_nodes 465 7 98 118

Ccp_alpha 3.57 4.17e-06 - 0

Min_weight_fraction_leaf 0.0029 0.017 - 0

Learning rate 0.23 0.49 0.47 -

Alpha - 0.66 - -

Subsample - 0.76 0.53 -

Max_samples - - - 0.95

Gamma - - 0.006 -

Min_child_weight - - 0.16 -

Reg_lambda - - 0.01 -

Colsample_bytree - - 0.57 -

Figure 3. Measured Versus Expected Scattering Dots in the CS-BPC Phases.

A B

C D

horizontal green dots and the blue line shows the values of 
R2. As a result, among all techniques for CS-BPC, the GBRT-
FBIO and XGB methods have the top performance.

ML and EL models can accurately predict BPC strength 
and workability properties, as reported by several 
studies[14,18-21]. According to R2 compare, GBRT methods 
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Table 4. The Precision and Effectiveness of Each CS-FBIO Model

TestingTraining
Models

MAPEMAERMSER2MAPEMAERMSER2

0.2150.6941.0340.9210.0180.0340.0680.999ADB- FBIO 

0.1550.430.5720.9700.0470.1480.2060.996GBRT- FBIO

0.1670.4640.6110.9650.0750.2390.2960.992XGB- FBIO

0.2550.76810.9220.0960.3690.6400.966RF- FBIO

Figure 4. Taylor Graphs of Several CS-FBIO Models 
and Traditional Approaches.

for CS outperformed all existing models during the testing 
and training levels. Based on RMSE and MAE values 
for CS, some existing models were superior, potentially 
due to the dataset’s quality. As a result, EL methods are 
more practical and generalize more effectively to BPC 
characteristics, thus saving time and resources.

3.5 SHAP
SHAP is a game-theoretic approach designed to 

describe the result of machine-learning methods[49]. SHAP 
presents the contribution of the feature to the mode’s 
output, offering a more interpretable and transparent 
understanding of the model’s decision-making process. 
In the ensuing sections, we thoroughly analyze the 
outcomes in the proposed predicting structure, which 
is designed to interpret and comprehend the results of 
the probabilistic predicting model. Our initial focus is on 
point forecasts, specifically examining how the developed 
model utilizes various features to make predictions. The 
SHAP method is employed for explanations, covering 
CS. Figure 5 illustrates the average contribution of each 
feature, with each bar plot representing the importance 
of a specific property. Cement and water play significant 
roles in CS model, contributing more substantially. Also, 
Silt exhibits minimal impact on the outputs.

Each dot in Figure 6 represents a distinct forecasting, 
and its location along the x-axis signifies the impact of 
that attribute on the output of the model. Furthermore, 
each dot's color corresponds to a feature value (varies 
from blue to red) emphasizing the relative contributions 

of different feature values to the final result. The long 
tails show characteristics that are highly significant. The 
dots’ vertical distribution suggests that there are more 
findings with comparable effects. These SHAP summary 
graphs in such a setting include details on the number 
of reports that have those qualities as well as the size 
and direction of each feature's effect. As an example, 
elevated cement values in CS model tend to elevate the 
model output, while values closer to zero for cement lead 
to a decrease in the model output. Therefore, the impact 
on the model output becomes more substantial with 
higher cement values.

A heatmap of SHAP values across all input variables 
is shown in Figure 7. CS was shown on top as functions 
of all variables. The ranges of SHAP values which show 
the impact on each model target are depicted by various 
colors ranging from blue to red. For this heatmap, 
arbitrary sample pools equal to training data sets were 
chosen. Considering the intense 11 on the left side of the 
CS-BPC, water and cement appear to be two key input 
parameters. 

3.6 Online Application of Proposed 
BPC Models 

Models developed using EL-FBIO methods differ 
from classical regression methods as they do not 
simply establish direct relationships between inputs 
and outputs[50]. To address this, implementing an online 
application would allow researchers and practicing 
engineers, who are the end users of the proposed BPC 
models, to easily estimate mechanical and workability 
properties. Several previous studies have developed 
software using MATLAB Graphical User Interface to 
predict the properties of different types of concrete[51,52]. 
The proposed online application offers several key 
advantages: (i) faster access to results, enabling more 
thorough investigation of mix designs; (ii) reduced 
production costs, while ensuring the safety and quality of 
concrete designs, by allowing users to determine whether 
a mix design is reasonable; and (iii) ease of use, which 
minimizes human error in calculations[37]. Free online 
access is provided as well (https://colab.research.google.
com/drive/1a3pjScLsripH-756yYk2nyol5g7HM9U1), 
allowing engineers and researchers to obtain accurate 
predictions of BPC strength and workability parameters 
directly at their project site in just a few simple steps.

https://doi.org/10.53964/id.2024033
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Table 5. Comparing Proposed El Models to Those in the Literature

MAERMSER2

No. of DataInputs No.ReferenceModel
TestTrainTestTrainTestTrain

CS (MPa)

0.4120.3010.5740.3930.9720.9891697Tavana Amlashi et al.[18]ANN

0.4970.4350.6560.5730.9650.9781697Tavana Amlashi et al.[18]MARS

0.7100.8950.9631.2930.9040.8931697Tavana Amlashi et al.[18]M5Tree

0.1700.1910.4510.4320.9910.993727Ghanizadeh et al.[14]SVM

--0.8440.4880.9670.992727Ghanizadeh et al.[14]ANN

--0.4270.2070.9560.9893878Tavana Amlashi et al.[19]SVM

--0.5770.1240.9210.9963878Tavana Amlashi et al.[19]ANN

--0.6690.3540.8990.9673878Tavana Amlashi et al.[19]ANFIS

0.4940.2960.6290.3650.9630.9921697Tavana Amlashi et al.[20]SVM

0.6160.6050.9870.8030.9440.9561697Tavana Amlashi et al.[20]MGGP

0.8920.9411.1471.2210.8610.8891697Tavana Amlashi et al.[20]GMDH

0.9990.6351.5230.8940.8290.9461697Tavana Amlashi et al.[20]RSM

Overall: 0.121Overall: 0.26Overall: 0.876457Alishvandi et al.[21]DT

Overall: 0.196Overall: 0.297Overall: 0.836457Alishvandi et al.[21]RF

Overall: 0.308Overall: 0.422Overall: 0.676457Alishvandi et al.[21]GB

Overall: 0.152Overall: 0.263Overall: 0.866457Alishvandi et al.[21]XGB

Overall: 0.357Overall: 0.513Overall: 0.526457Alishvandi et al.[21]SVM

Overall: 0.121Overall: 0.337Overall: 0.796457Alishvandi et al.[21]KNN

0.6940.0341.0340.0680.9210.9992857This StudyADB-FBIO

0.430.1480.5720.2060.9700.9962857This StudyGBRT-FBIO

0.4640.2390.6110.2960.9650.9922857This StudyXGB-FBIO

0.7680.36910.6400.9220.9662857This StudyRF-FBIO

Figure 5. Feature Significance of the Input Variables. Figure 6. Summary Plot of the Point Predicting Model.

3.7 Limitations
The dataset of 285 compressive strength records 

used in this study is relatively small, which could limit the 
robustness and generalizability of the machine learning 
models developed. Small datasets increase the risk of 
overfitting, where models perform well on the training 
data but struggle to generalize to new, unseen data. 
Additionally, the dataset, compiled from various published 
sources, may contain inherent biases due to variations 
in material preparation, testing environments, and input 
parameters. These inconsistencies could affect the 
model’s ability to accurately predict compressive strength 

in broader applications. While ensemble models like RF, 
GBRT, and XGB are generally robust, they are sensitive to 
the quality and diversity of the input data, and with a limited 
dataset, they may not capture the full range of variability 
needed for real-world applications. Cross-validation and 
regularization techniques were applied to mitigate some of 
these concerns, but the findings should still be interpreted 
cautiously. Future work should focus on expanding the 
dataset through additional experiments or synthetic data 
generation, and employing uncertainty quantification 
methods to enhance the reliability and generalizability of the 
predictions in practical engineering contexts.

https://doi.org/10.53964/id.2024033
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Figure 7. SHAP Values and Function Variations of Each Target.

4 CONCLUSION 
This research introduces an advanced machine learning 

approach for predicting the CS of BPC using Python-based 
ensemble techniques, including RF, ADB, GBRT, and XGB, 
all optimized through FBIO algorithms. The challenge of 
accurately assessing BPC’s compressive strength through 
experimental or field evaluation lies in the complexity, high 
costs, and need for professional expertise. To overcome 
these barriers, this study proposes an improved and 
accessible computational method, allowing for more 
efficient and reliable predictions of BPC properties. To 
build the predictive models, 285 data records of CS tests 
were collected from a variety of published literature 
sources. The selected input variables-gravel, bentonite, 
silty clay, curing time, sand, cement, and water-were 
used to train the models and assess their performance. A 
comprehensive evaluation of each model was performed 
using key performance metrics, including the R², MAE, 
RMSE, MAPE, and the a20-index, for both the training and 
test datasets. Among the models, GBRT emerged as the 
most accurate for predicting BPC compressive strength, 
consistently outperforming other ensemble methods based 
on the evaluation metrics. In addition to superior predictive 
accuracy, the study utilized SHAP to interpret the model’s 
predictions and provide insights into the relative importance 
of each input variable. The SHAP analysis demonstrated that 
cement was the most significant factor influencing BPC’s 
compressive strength, with a mean SHAP value of 0.17, 
indicating its substantial impact on model predictions. This 
insight emphasizes the importance of cement variations in 
the overall performance of BPC and highlights the practical 
value of the model in optimizing BPC mix designs. Overall, 
the findings of this research underscore the potential of 
ensemble learning methods, particularly GBRT with FBIO 
optimization, in offering a robust and efficient alternative to 
traditional testing methods for BPC. The developed models 
not only reduce the need for expensive and time-consuming 
experimental evaluations but also provide a practical tool for 
researchers and engineers to predict BPC properties with 
high accuracy. 

As a suggestion for future work, we recommend 
exploring the application of advanced machine learning 
techniques, such as deep neural networks (DNNs) and 
transfer learning, which may enhance model performance, 
particularly for small datasets. To address scalability 
concerns, future studies should also investigate the 
feasibility of applying FBIO to larger datasets or real-time 
applications by integrating more efficient optimization 
algorithms, such as Bayesian optimization or genetic 
algorithms, which could improve hyperparameter tuning 
while reducing computational costs. Expanding the 
dataset through additional experiments or synthetic data 
generation could further improve model generalizability. 
Additionally, exploring parallel processing or cloud-based 
computing could help optimize FBIO’s scalability for real-
time use. Finally, incorporating uncertainty quantification 
methods would offer valuable insights into the reliability 
and robustness of predictions in practical engineering 
applications.
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