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Abstract
Understanding and forecasting the dynamics of wound healing processes 
heavily relies on mathematical modeling. Researchers can understand the 
complicated connections between cells, tissues, and biochemical components 
involved in wound healing by using mathematical equations and computational 
simulations. One such mathematical model that has seeks the interest of 
researchers in exploring wound healing phenomenon is Fisher’s equation. In 
the present work, the equation is solved using differential quadrature method 
with trigonometric tension B-spline (TTBs) basis function. The obtained results 
are compared with the results obtained from earlier studies and the results 
are presented in form of tables and figures. The implementation of the particle 
swarm optimization algorithm has removes the dilemma of unknown parameter 
involvement in the TTBs and hence resulted in a novel technique to find the 
numerical results.
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1 INTRODUCTION
To understand the biological processes the math- 

ematical modeling plays a very important role. Wound 
healing is a process of recovering of an injured tissue. 
It is a multifaceted biological phenomenon that arises 
as a natural response to the damaged tissue. Directed 
migration, or the movement of cells towards the wound, 
is one of the key elements in wound healing. There are 
various aspects of wound healing that can be covered 
with the involvement of study with mathematical 
modelling.

The first aspect is that the mathematical models 

provide insight into wound healing mechanisms. These 
models facilitate the integration of experimental and 
clinical data, resulting in a thorough comprehension 
of the underlying cellular and molecular processes. 
They cast light on important factors including cell 
migration, proliferation, differentiation, angiogenesis, 
extracellular matrix remodeling, and inflammation.

The second aspect is the predictive ability of 
mathematical models in wound healing[1]. These 
models estimate wound closure rates and predict 
healing times by simulating the progression of wound 
healing under various conditions. This predictive ability 
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helps clinicians evaluate wound healing trajectories, 
design treatment strategies, and manage patient 
expectations.

In order to better understand the biological process 
of mathematical modelling associated with the 
wound healing, this paper discusses the importance 
of Fisher’s equation, which is a equation that exists 
as a mathematical modelling of this phenomenon. 
To numerically solve the equation, the differential 
quadrature method (DQM) is applied to the equation 
using trigonometric tension B-spline (TTBs) functions. 
It also utilizes one of the well-known optimization 
technique, particle swarm optimization (PSO) technique 
to minimize the error in the solution based on the 
parameter value. The novelty of the work includes 
the implementation of the DQM with the optimization 
technique that leads to the error minimization. The 
present research is actually creating a new way of 
using the optimization to minimize the error involved in 
the numerical methods.

2 METHODS
2.1 Existing Mathematical Models in 
Wound Healing Process

There are different types of studies based on 
mathematical models used in the study of wound 
healing such as cell-based models illustrate how 
individual cells behave and interact during wound 
healing. To mimic cell migration, proliferation, and 
differentiation, these models frequently employ agent-
based modelling or cellular automaton techniques. 
They can record cell distribution and reactions to 
biochemical signals in the wound microenvironment[2].

There are reaction-diffusion models that describes 
the diffusion and reactivity of biochemical substances 
in the wound site, such as growth factors or cytokines. 
These models include equations that describe molecular 
transport and interactions with cells and tissues. The 
continuum models, are the models frequently based 
on partial differential equations (PDEs), that describe 
wound healing processes in a continuous manner[3]. 
These models take into account the distribution and 
changes in critical variables throughout time and space, 
such as cell density, extracellular matrix components, 
and growth factors.

One of the models[3] to discuss the density of cells at 
a particular instant of time is defined as follows:

where the cell layer is presented as a two-dimensional 
compressible fluid.

Here, ν is considered as a constant appearing 
from the ratio of the proportionality constant and 

adhesion constant. the growth term, denoted as 
g(u) characterizes the density-dependent net rate of 
change in the quantity of cells within the layer as a 
result of both proliferation and perish. In the context of 
modelling enterocyte migration experiments, the term 
g(u) is commonly regarded as zero. Similarly, when 
modelling cell-colony expansion, it is assumed that 
g(u) follows a logistic growth pattern. In this context, 
the boundary conditions are considered based on the 
scenario of wound closure.

The mechanical models examine the function of 
mechanical forces in wound healing, such as tension and 
compression[4]. To describe the mechanical properties 
of tissues and their reaction to external forces, these 
models frequently combine notions from continuum 
mechanics. Ordinary differential equations (ODEs) are 
often used to describe discrete models. These equations 
don’t have to be solved for the whole domain. Instead, 
they are solved locally to predict how each object will 
change over time.

In general, there exist some hybrid models also that 
employ many modelling methodologies to represent 
multiple elements of wound healing. A hybrid model, for 
example, may combine a cell-based model with reaction-
diffusion model to simulate cell-biochemical component 
interactions. These models enable a more comprehensive 
description of the intricate wound healing processes.

The field of mathematical modelling in wound healing 
is dynamic, with advances and modifications being 
made to better reflect the complexity of the healing 
process[5]. Figure 1 presents the different types of 
mathematical models that has been used to discuss the 
wound healing.

Mathematical modelling of wound healing has been 
extensively studied and documented in the literature. 
A variety of features of wound healing, including as 
the cellular and molecular processes involved, the 
interactions between various cell types, the impacts of 
biochemical variables and treatments, and the overall 
dynamics of wound closure, have been described and 
simulated using mathematical models. Figure 2 presents 
an explanation of the function of mathematical modelling 
in wound healing.

In a study by Jorgensen and Sanders[6], a summary 
of mathematical models is provided that focus to 
study wound healing processes. Different modelling 
approaches, including cell-based models, reaction-
diffusion models, and continuum models, are 
discussed. The work highlights the contributions of 
mathematical modelling to the elucidation of the role 
of important factors in wound healing, including cell 
migration, proliferation, and angiogenesis.
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Figure 1. Types of Mathematical Models in the Study of Wound Healing.

Figure 2. Mathematical Modeling in Wound Healing.

Modelling biological processes, such as inflammation 
and wound healing, uses differential equations more 
frequently than any other standard, classical technique. 
All stages of wound healing, from inflammation to 
wound closure, have been studied using equation-
based models. These computational models have been 
studied to serve as the foundation for personalized 
preventive interventions[7].

In 2021, a review has been reported to explore the 
mathematical models of skin wound healing[8]. This 
article provides an overview of the different ways in 
which mathematical modelling can provide profound 
insights into the mechanisms that underlie aspects 
of wound healing, encompassing seminal works from 
the last several decades as well as contemporary 

advancements in the field. The contributions of these 
models have been highlighted and made to the 
understanding of the interplay between the multitude 
of components underlying the healing process, as well 
as to the development of more effective treatment 
strategies.

2.2 Fisher Equation
Fisher published the Fisher’s equation, a reaction-

diffusion equation, in 1937[9] to analyze the expansion 
of beneficial genes brought about by mutation. 
Subsequently, extensive research has been conducted 
to explore the use of this equation in other phenomena, 
such as the emergence of patterns in the propagation 
of waves, the examination of cellular growth in the 
field of tissue engineering, the modelling of oscillatory 
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chemical reactions, population biology, wound healing, 
and the progression of tumors.

The Equation (2) is a nonlinear which is named as 
Fisher’s reaction diffusion equation with the right hand 
expanded as follows:

Here, the variables of the equation correspond to the 
constituent elements of the phenomenon elucidated by 
Fisher’s equation. The interpretation of u(x,t), depends on 
the specific application of the equation. For example, in 
the context of brain tumour analysis, the variable u(x,t), 
represent the carrying capacity, ν denotes cell mobility as 
indicated by the diffusion coefficient, and r signifies the 
growth rate.

While in the framework of wound healing, the variable 
u, denoted as u(x,t), reflects the number of cells at a 
specific spatial location x and time t. The initial component 
on the right-hand side of the equation reflects spatial 
diffusion with a diffusion rate denoted as ν, whereas 
the subsequent term signifies the population’s logistic 
growth[9].

In recent years, academics have undertaken numerous 
endeavours to ascertain the precise solution to the 
equation by both analytical and numerical methods. 
For example, the equation was subjected to numerical 
analysis[10] via the moving mesh approach. A comparative 
analysis[11] was conducted to evaluate the non-standard 
finite-difference scheme (FDS) and nodal integral 
approach using the finite element numerical solution. The 
Adomian decomposition approach[12] was utilized to show 
the precise numerical solution of the problem analytically. 
In a study, a puesudospectral strategy is proposed[13] 
that utilizes Chebyshev-Lobatto points for the purpose 
of solving the problem. The Fisher’s equation is solved 
using a DQM[14] with FDS implementation. Additional 
numerical techniques, such as the radial basis function 
based Pseudospectral method[15] and the DQM[16], have 
been effectively employed in recent years to obtain the 
numerical solution of Fisher’s equation. Various other 
computational techniques have also been employed by 
researchers to ascertain the numerical solution to Fisher 
reaction diffusion equations. These techniques include 
a sinc collocation method[17], a B-spline collocation 
method[18], a modified cubic B-spline collocation 
method[19], a Crank-Nicolson based hybrid approach with 
DQM[20], and B-spline with finite element approach[21].

2.3 Methodology
The DQM, first proposed by Bellman et al.[22] in their 

seminal work, is a highly effective approach for solving 
PDEs. In recent times, the DQM has gained significant 
popularity as a means of determining the weighting 
coefficients through the utilization of diverse basis functions.

The utilizations of B-spline basis functions in various 
formulations have proven to be effective in addressing 
PDEs[23-26]. The TTBs is a basis function that has received 
limited attention in the literature. The implementation 
of the TTBs functions is done last few years to solve 
some well-known equations such as the basis functions 
are used to solve the fractional Burgers’ equation using 
TTBs with the collocation approach[27], to obtain the 
extremum of the functionals in calculus of variations[28], 
to solve the Burger-Huxley equation using the hyperbolic-
trigonometric tension B-spline method[29]. Recently, a 
comparison is made for the trigonometric and hyperbolic 
tension B-spline[30] to solve hyperbolic telegraph equation.

The limited usage of this B-spline can be attributed 
to the unknown parameter involved that play a major 
role in finding the numerical solution. To deal with the 
unknown parameter authors have used the optimization 
as a tool to obtain the parameter that has proven to 
be an effective way to obtain the solution of PDE[31,32]. 
The present study used the widely recognized PSO 
optimization technique to determine the tension 
parameter that could results in the minimum error.

The DQM involves the transformation of PDE to 
ODE. The PDE to be solved is transformed to an ODE 
by expressing the derivatives existing in the equation 
as the linear sum of the chosen basis function with 
weighting coefficients the solution is obtained. For 
instance, the PDE ut = νuxx + ru(1-u),can be written as 
ut = f(u) once the derivatives of u w..r.t x are written 
as a linear sum of functions using a basis function. The 
methodology in detail is discussed as follows:

Let [a, b] represents the considered finite domain of 
the differential equation. This domain can be discretized 
into a number of known points with a uniform partition 
having the knots such that:

with space step as .

In DQM, the rth derivative of the function can be 
approximated as

where  are the weighing coefficients.

The values of  can then be utilized to determine the 
weighting coefficients for the second-order derivatives 
using the following relationship:
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Let TTB(x) be the B-splines[27,29] fitted on the points 
distributed uniformly on the knots in the interval [a,b] 
defined as

Here p is a tension parameter, s=ph and . 
The values of the spline and its first two derivatives at the 
knots xi’s are calculated as shown in Table 1.

Here,

Following is the matrix system Aqij=B that results to 
determine the weighting coefficients for different knot 
points using the relation for the first order derivative as 

. With i and j varies from 1 to N denoting 

the N knots.

Here Ψk(xi) are the modified TTRs defined on the 
first two and the last two points separately to avoid 
the ill conditioning of the obtained matrix system. 
Following are the modifications done on the TTBs:

where i varies from 1 to N for all the knot points.

Here A is the coefficient matrix that correspond to 
each knot point to determine qij’s with the right-hand 
side defined as the corresponding column of the matrix 
B shown as:

Once the derivatives are obtained using the weighting 
coefficients, the system can be solved that leads to a 

system of ODEs. There exist multiple methodologies 
for solving this system of ODEs. Here, the solution is 
obtained optimal four-stage, order three strong stability-
preserving time-stepping Runge-Kutta (SSP-RK43) 
technique[26], which was our preferred method.

Once the solution is obtained it is calculated for the 
different values of the unknown parameter using the 
PSO to minimize the errors. An optimization technique 
is necessary to find the parameters that make the 
solution better as compared to the results obtained by 
hit and trial method. PSO[33] is one of the most well-
known metaheuristic optimization algorithms, having 
been successfully deployed in a variety of applications 
ranging from image processing to finding shape 
parameter[34,35].

The aforementioned algorithm is known for its 
efficacy, and is influenced by natural phenomena such 
as fish schools and bird flocks, wherein cooperative 
behaviors result in outcomes that are considered 
optimal. Every particle in PSO modifies its trajectory 
according to its own and neighboring events, 
promoting collaboration and knowledge acquisition. 
These particles stand in for potential solutions and 
change their behavior in a population-based search 
dependent on their current location and environmental 
factors.

The search process in this technique is driven by 
the updating of particle positions and velocities at each 
time step, which is a component of the solution that 
has to be optimized at each location. Every particle 
navigates based on its most familiar positions, both 
within its immediate vicinity and throughout the search 
area. These positions are modified when other particles 
uncover new positions. The updating rules for each 
particle’s location and speed are determined using the 
following relation:

where , represents particle’s position and represents 
i th particle’s velocity in D dimension at time step t, pgb 

represents the particle having the best fitness value, 
pib is the particle’s best position visited so far, d1, d2 
are acceleration coefficients which quantify particle 
personal and global experience respectively, x is called 
constriction coefficient which evaluates a value in the 
range [0,1] and is given by

with θ=θ1+θ2, θ1=d1r1, θ2=d2r2 and κ ≈ 1.

PSO is an approach employed to iteratively improve 
parameter values in order to minimize error. The reliability 
of the solution achieved through the application of the 

Table 1. TTBs Values

xi-2 xi-1 xi xi+1 xi+2

0 η η 0

0 δ 0 -δ 0

0 ω -2ω ω 0

https://doi.org/10.53964/id.2024013
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approach is demonstrated by its ability to search for 
the optimal number of iterations, given a predefined 
population size or swarm size, and a range of optimized 
parameters. The parameters considered in this study 
are as follows: the size of the swarm is set to 10, the 
maximum number of iterations is set to 50, and the inertia 
weight is linearly lowered with a value of d1=d2=2.05.

The programming in MATLAB is performed using DQM 
with TTBs and thus calling the PSO for the investigation 
of parameter leading to the minimization of errors.

3 RESULTS AND DISCUSSION
The Fisher’s equation has been considered as a 

wound healing equation in various form in literature for 
which the researchers are continuously putting efforts 
to discuss the underlying phenomenon[36,37]. In this 
work the equation has been solved by implementation 
of the above discussed methodology for the different 
cases as per the value of the reaction factor. Since, 
the evaluation of error norms allows to study the 
comparison of the accuracy and efficiency of the 
numerical methods. The results are presented in form 
of errors with comparison with the exact solution and 
the results available from the literature.

The application of the Fisher equation is suitable 
when considering diffusion and proliferation as the 
primary mechanisms involved in the process of 
wound healing. Equation (1) defines the variable 
u(x,t) as the representation of cell density at a 

certain distance x from the wound edge at time t. The 
parameter r denotes the proliferation rate of a cell in 
an environment without crowding, while the constant 
parameter ν represents the diffusivity coefficient 
for individual cells. The analytical solution for the 
aforementioned differential equation was derived by 
Ablowitz and Zepetella[38] as follows:

The solution of the equation has been obtained 
considering the domain [-0.2, 0.8] with nonlocal 
boundary conditions as u(-0.2, t)=1, u(0.8, t)=0. The 
obtained numerical solutions have been presented 
in form of figures and tables with the comparison of 
solutions obtained other schemes from literature. 
The solution is obtained for the small-time t=0.001 
to t=0.002 and with a large value of reaction factor 
considering the diffusion rate ν=1.

The maximum absolute error (L∞) in the numerical 
and exact solutions are presented in Tables 2 and 3. The 
values are obtained at different number of subintervals 
and for different values of parameter of the TTBs for as 
2,000 and 10,000 respectively. The considered values of 
the parameter are obtained using PSO with the number 
of iterations as 50, the parameter range as [1,5]. 
The results are obtained with the results available in 
literature to solve this specific problem.

In order to facilitate a comparison between the 

Table 3. L∞ Errors for r=10,000 for Time Step 1×10-5

N P Present [23] [24] [25]

t=0.001

121 0.1 1.4227E-05 1.1367E-04 1.9179E-03 8.123E-04

141 0.1 1.3543E-05

201 1 1.3122E-05

t=0.002

121 0.1 1.5155E-04 5.1351E-04 1.4389E-02 1.981E-04

141 0.1 1.3444E-04

201 0.1 1.1929E-04

Table 2. L∞ Errors for r=2,000 for Time Step 1×10-5

N P Present [23] [24] [25]

t=0.001

21 1 5.9964 E-06

31 1 1.5151E-05

41 1 2.5142E-05 9.7320E-3 5.18E-03 5.18E-03

t=0.002

21 3.953052 2.0287E-06

31 1 1.3295E-06

41 1 1.5829E-06 1.8491E-3 1.1091 E-03 1.11E-03
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Figure 3. A Visual Representation Illustrating the Relationship Between Time-Dependent Profiles at Various Time 
Levels for r=2,000 (A) and r=10,000 (B).​

A

B

obtained results and the precise solution, the findings 
are visually represented through graphical means 
in Figure 3. The results obtained using the present 
method demonstrate good accuracy and efficiency 
for the Fisher’s equation. However, for problems with 
intricate geometries or solutions with sharp gradients, 
advanced discretization techniques like Discontinuous 
Galerkin Methods or Adaptive Mesh Refinement could 
be explored in future work. These methods may 
provide even higher accuracy and potentially improve 
efficiency when dealing with complex wound healing 
scenarios.

While numerical methods have proven valuable 
in simulating wound healing, limitations exist. These 
limitations can stem from the complexity of biological 
processes not fully captured by the models, such 
as the intricate interplay between cell types and 
the influence of the immune system. Additionally, 
accurately representing the dynamic changes in 
the wound environment, including variable tissue 
properties and blood flow, can be computationally 
challenging. Furthermore, the effectiveness of a chosen 
numerical method can be impacted by the specific 
wound geometry and the desired level of resolution. 
Despite these limitations, ongoing research continues 
to refine numerical models and explore advanced 

computational techniques, aiming to bridge the gap 
between simulations and the remarkable complexities 
of wound healing.

4 CONCLUSION
In this study, the PSO technique of optimization 

has been used to obtain the parameter for the 
trigonometric tension B-spline-based DQM. This method 
is employed for the computation of the numerical 
solution to Fisher’s equation, which finds practical 
application in the field of wound healing. In order to 
validate the efficacy of the technique, the problems are 
addressed using on different values of reaction factors. 
In order to demonstrate the errors, various time steps 
and domain partitions are considered. By application 
of the present method, researchers and scientists can 
understand the complex interactions that occur during 
wound healing involving tissues, cells, and biological 
elements. This study highlights the need of employing 
interdisciplinary methodologies to enhance our 
comprehension of intricate biological phenomena and 
presents opportunities for additional investigation and 
advancement in the realm of wound healing.
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