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Abstract
Catalysis plays vital roles in chemical industries, which brings out significant 
convenience to human life in many aspects. With the development of both 
science and technology, various advanced and multivariate technologies 
have been cultivated in catalysis. Herein, a brief introduction in the frontiers 
of catalysis chemistry including single-atom catalysts, single crystal-based 
model catalysts, molecular switches catalysis and metal-organic frameworks / 
covalent-organic frameworks based catalysts has been given. Complex reac-
tant systems (Biomass, vehicle exhausted gases, plastic wastes, and waste 
water) that featured with complex compositions, chemical-bonding and inter-
actions endow researchers huge challenges to convert them to value-added 
chemicals or treat them to less-toxic or even non-toxic chemicals. Successes 
on catalytic conversion and degradation of these complex reactant systems 
sheds light on constructing a greener and more sustainable Earth via using 
both traditional and advanced catalysts combined with rational strategies. 
Progresses that achieved on the catalytic degradation of these complex re-
actant systems have been summarized here. However, the remaining issues 
concerned with these complex reactant systems drive us to think about how 
to further deal with them to achieve higher sustainability. Herein, four prospec-
tives are proposed. We truly believe that with the continuous efforts on devel-
oping new catalysts with high efficiency and exploring reaction mechanisms 
under actual conditions towards these complex reactant systems, clearer un-
derstanding and better results could be achieved ultimately.
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1 INTRODUCTION
Since the concept of “catalysis” and “catalyst” 

was firstly proposed by Berzelius as early as 1835, 
considerable attentions have been paid to this field[1-3]. 
At present, the majority of the chemical processes 
and products closely related to human life is related to 
catalytic technologies, such as synthesis of ammonia[4], 
synthesis of sulfuric and nitric acid[5], Fischer-Tropsch 
process[6,7], petroleum refining including hydrocracking 
or hydro isomerization[8,9], and polymers production[10,11] 
etc. Therefore, the development of high-performance 
catalysts remains an ongoing and essential goal. 

Aiming to achieve sustainable progresses in catalysis, 
a multidisciplinary integrated discipline, the developed 
progress of various technologies and assistance from 
other fields are inevitably needed. Nowadays, with the 
rapid development of science and technology, the field 
of catalysis has evolved from the concept of simply 
facilitating reactions to proceed into precisely controlling 
of catalytic reactions or designing catalysts with fine 
structures or even at atomic level. These improvements 
and progresses benefit by the development of 
various reliable and advanced technologies, achieving 
transformation of the catalytic process from a “black 
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box” reaction into touchable and regulable reaction. 
Various preparation methods have been developed 
subsequently. Here, we simply define these catalysts 
that prepared by simple methods or widely used in 
industries as traditional ones, and these prepared 
by more elaborate methods or with fine structure as 
advanced catalysts. For the preparation of traditional 
catalysts, methods that are rather easier to operate and 
more suitable for large production include impregnation, 
precipitation, comixing, thermal deposition, leaching, 
melting, electrolytic route, ion exchange and coat etc. 
have been developed well. Moreover, modifications on 
catalysts by defect engineering strategies[12] or salt-
assisted gas-liquid interfacial element doping[13] etc. 
have been also explored. Besides, as for the synthesis 
of advanced catalysts, more elaborate operations 
and more stringent synthesis conditions are usually 
required. For example, sol-gel method, microwave 
ultrasonic method, supercritical technology, physical 
vapor deposition method, chemical vapor deposition 
method, solid-phase synthesis and template method, 
hydrothermal or solvothermal method, micro-emulsion 
method, electrochemical deposition method, self-
assemble and micro-crystallization technologies etc[14,15]. 
These methods are beneficial for the synthesis of 
catalysts with fine structure, and the obtained catalysts 
are featured with specific structural characteristics, 
morphologies or active sites controllably.

Several new techniques or concepts that stepping 
into the vision of researchers are proposed here. Single-
atom catalysts (SACs) are emerging as one of the 
research hot-pots recently. Figure 1 displays the number 
of publications in literature with the word “Single Atom 
Catalysts/Catalysis” contained in the title of articles since 
2011, indicating its prosperous development trend. 
SACs are totally different from traditional nano-catalysts 
or subnano-catalysts. When metal dispersion reaches 
100%, that is, single atoms are produced, various new 
characters are introduced accordingly, such as sharply 
increased surface free energy, quantum size effect, 
unsaturated coordination environment and support-metal 
interactions. These unique characteristics are significantly 
different from those of nano or sub-nano particles, 
vesting SACs superior catalytic performance[17].

Meanwhile, it can change the adsorption/desorption 
selectivity to substrates, intermediates or products on 
the active sites of catalyst, thus affecting the reaction 
kinetics. Moreover, SACs are typically loaded with 
low amount of metal, which greatly improves the 
utilization efficiency of metal atoms. Zhang et al.[18] 
firstly reported the single-atom Pt1/FeOx catalyst, 
which showed both excellent stability and high activity 
for CO oxidation and preferential oxidation of CO in 
H2. Later, in 2012, Kyriakou et al.[19] achieved the high 
selectivity towards the hydrogenation of styrene and 

acetylene by using a SAC where isolated Pd atoms 
were loaded on the Cu (111) plane. By using means 
of desorption measurements combining with high-
resolution scanning tunneling microscopy (STM), the 
SACs were characterized clearly, as shown in Figure 2.  
Meanwhile, theoretical calculation revealed that the 
isolated Pd atom was capable of lowering the energy 
barrier to both hydrogen uptake on and subsequent 
desorption from the Cu metal surface substantially[19]. 
Besides, employing Fe/SiO2 catalyst where single Fe 
atoms embedded in a silica matrix, enabled the direct 
conversion of methane to form ethylene and aromatics 
exclusively. The absence of adjacent Fe sites in the 
SACs prevented C-C coupling, further oligomerization, 
and hence, prohibited coke deposition[20]. The single-
atom Pd1/TiO2 catalyst exhibited high catalytic activity 
in the hydrogenation of C=C bonds, exceeding that of 
commercial Pd catalysts by a factor of 9, reported by 
Liu et al[21]. Due to the outstanding and unique catalytic 
performance of SACs, continuous attentions and deeper 
researches have been paid to, thus more and more 
diversified monoatomic catalysts have been prepared, 
including Pt[22,23], Pd[24,25], Au[26,27], Ir[28], Ag[29], Rh[30], 
Fe[31,32], Co[33] etc. Nowadays, research interests over 
SACs are still expanding, and a variety of methods for 
synthesizing SACs are also being developed. Remarkable 
achievements have been also obtained by applying 
these SACs in multiple reactions[16,34-36]. Besides, the 
applications of MXene-based SACs for energy conversion 
have also attracted much attentions[37]. 

Surface chemistry and catalysis based on single 
crystals have also gained wide research attentions, 
realizing the construction of another types of “model 
catalysts” that active sites are clearly built and 
demonstrated, thereby a clear activity-relationship can 
be also easily constructed. Different from nanocrystals, 

Figure 1. Number of Publications Where “Single Atom 
Catalysts/Catalysis” Is in the Title Since 2011. The 
statistic data are from Web of Science. Reproduced from Ref.
[16] with permission from American Chemical Society.
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Figure 2. STM Images Showing Atomically Dispersed Pd Atoms in a Cu(111) Surface and Hydrogen Atoms That 
Have Dissociated and Spilled over onto the Cu Surface. Reproduced from Ref.[19] with permission from AAAS (Science).

single crystal contributes to synthesize model catalysts 
with uniform and well-defined surface structures, which 
is an effective strategy to catalyze simple or precise 
reactions with deeper explorations on both reactivity and 
structure-activity relationship. Comparisons between 
single crystal-based catalysts and nano crystals-based 
catalysts have been clearly elaborated by Chen et al.[38], 
as illustrated in Figure 3. Moreover, single crystal-based 
model catalysts based on single metallic crystal phases 
have been also developed[39]. Noteworthy, in view of 
the well-developed and advanced spectroscopic and 
microscopic techniques, in-situ characterizations of 
surface structures and active species of single crystal-
based catalysts have been easily accomplished[40]. 

In recent years, a novel concept “molecular switches” 
has entered the visions of researchers[41]. Molecular 
switches are defined as molecules in which bonds, 
electronic state, or structure change in response to 
environmental stimuli such as light, heat, electrical field, 
pH, atmosphere, or pressure[42,43]. They are widely used 
in photonics, bioscience, chiral synthesis, computer 
science for logical calculations, DNA sensors and chiral 
synthesis etc. Based on the ready availability, precise 
tunability and environment-adjustable properties, 
the applications of molecular switches in catalytic 
processes are gradually sieving attentions. Several 
typical molecular switches catalysis, such as “Redox 
switches”, “Photo switches”, “pH switches” and “Ligand 
switches” are introduced here. Hu et al.[44] proposed 
the Fe-based redox-switches to modulate the catalytic 
performance of ZSM-5-based catalyst towards the 
methanol-to-aromatics reaction, which enabled a para-
xylene (PX) yield of up to 60% that was 3-6 times 
higher than previously reported values. Similarly, de 
Vries and Otten[45] applied this strategy to synthesis 
a formazanate-Zn catalyst with redox-switching 
properties, and accomplished the reversible on/off 
switching of lactide cyclopolymerization. A Ru-catalyzed 
redox-switchable catalytic system was reported to 
convert ketone into alcohol, and the catalytic activity 
of the complex was reversibly switched off and back 
on again over the course of the hydrogen transfer 
reaction[46]. 

Utilizing light to start or stop the chemical reactions 

has been studied widely, and molecular photo-switches 
are chromophores undergoing reversible isomerization 
between different states upon irradiation with 
light[47]. These molecular photo-switches find diverse 
applications as light-stimulated components in various 
research fields, where the ability to toggle the molecule 
between distinct states allows reversible control over 
the investigated systems. In 2011, Wang et al.[48] 
reported a light-driven molecular motor with integrated 
catalytic functions in which the stepwise change in 
configuration during a 360° unidirectional rotary cycle 
governed the catalyst performance with respect to both 
activity and absolute stereo-control in an asymmetric 
transformation. The schematic procedure of this system 
is proposed in Figure 4.

Neilson et al.[49] reported a photo-switchable organ- 
ocatalysis system wheret light was used to modulate 
the catalytic activities of N-heterocyclic carbenes, that 
is, the rates of different reactions were successfully 
modelled between fast and slow states by alternating 
exposure to visible or UV light, respectively. The recent 
booms in the development of photo-switches catalysis 
indicate that they are valuable tools for the reversible 
activation/deactivation of different molecules. pH-
responsive catalytic systems have also been developed 
well[50]. In 2008, Balof et al.[51], reported the first pH-
responsive catalyst with high and adjustable activity 
to olefin metathesis which was decorated with 
dimethylamino groups that were ideal pH-responsive 
groups. Another switchable organo-catalyst based on a 
rotaxane architecture had been developed by Blanco et 
al.[52], which could be switched “on” or “off” by adding 
acids or bases, acting the role to move the rotaxane 
ring to either conceal or reveal the catalytic site, as 
shown in Figure 5. The system could effectively control 
the reaction rate of Michael addition of an aliphatic thiol 
to trans-cinnamaldehyde, either by adding the catalyst 
in its active form or by in situ switching. 

Besides, an elegant molecular switch for the 
reversible formation of emulsions by simple pH variation 
was reported by Walace et al.[53] Very recently, Zhang 
et al.[54] reported the pH-Triggered molecular switch 
toward texture-regulated Zn Anode. As reported, 
the periodical fluctuation of H+/OH- was feasible to 
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Figure 4. Schematic Illustration of This Integrated 
Unidirectional Light-Driven Molecular Motor and Bi-
Functional Organocatalyst (top) and the Molecular 
Structure of (2R,2′R)-(P,P)-trans-1 (bottom). Reproduced 
from Ref.[48] with permission from AAAS (Science).

Figure 3. Comparisons Between Single Crystal-Based Catalysts and Nano Crystal-Based Catalysts. Reproduced 
from Ref.[38] with permission from Elsevier.

trigger the pH-dependent molecular switch reaction to 
modulate Zn/electrolyte interface dynamically, achieving 
the reversible transformation between γ-butyrolactone 
and γ-hydroxybutyrate at the Zn/electrolyte interface, 
and enhancing the reversibility of Zn. Another type 
of molecular switches such as “Ligand switches” 
has also been applied to catalysis[55]. The weak-link 
approach, which builds upon the growing number of 
methods for preparing metal-containing macrocyclic 
complexes, allows us to synthesize fine structures 
through coordination chemistry and hemilabile ligands 
with transition-metal-based regulatory sites that can 
be modulated through ligand displacement reactions. 
In this manner, catalytic processes can be turned on 
or off depending upon the presence or absence of 
small molecules or elemental anion effectors, as called 
“Ligand switches”[56]. Foy et al.[57] developed coordination-

coupled deprotonation (CCD) driven signaling and signal 
enhancement sequences by using the zinc(II)-initiated 
CCD of a hydrazone switch to instigate an acid catalyzed 
imine bond hydrolysis that separated a quencher from 
fluorophores, thus leading to emission amplification. Figure 
6 disclosed the working procedure of this system. Similar 
hydrazone switches had been also proposed by Pramanik 
and Aprahamian, and later applied for sequestering 
zinc(II) from the environment. 

In addition to the SACs, molecular-switch catalysis 
mentioned above, the applications of metal-organic 
frameworks (MOFs) and covalent-organic frameworks 
(COFs) materials in catalysis are also blooming, 
since they were firstly used as catalysts in 2000 
and 2011, respectively[59]. MOF, a rapidly developing 
interdisciplinary novel material, attracts extensive 
interests in catalysis since it is a relatively new class 
of crystalline porous materials with high surface area, 
structural diversity, and tailorability[60]. In general, there 
were three parts of MOFs that could be utilized as active 
sites for catalytic process including metal nodes, organic 
linkers and pore space, which was clearly presented in 
Figure 7[61].

Mature and diverse approaches to synthesize MOFs, 

Figure 5. Diagram of Acid-Base Switching of the 
Position of the Macrocycle in Rotaxane. Reproduced 
from Ref.[52] with permission from Wiley.

https://doi.org/10.53964/id.2024008
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Figure 6. The Imidazolyl-Containing Switch 1(E) Underwent CCD upon Addition of Zinc(II) Resulting in the 
Release of a Proton to the Environment. The Acidification of the Solution Can Be Used to Turn “On” pH-Sensitive 
Dyes (S/P), Leading to Fluorescence Output. Reproduced from Ref.[57] from the Royal Society of Chemistry.

Figure 7. The Schematic Diagram of Active Sites That 
Originated from MOFs. Reproduced from Ref.[61] with 
permission from Elsevier.

such as solution impregnation, double-solvent approach, 
chemical vapor deposition, solid grinding, thermal 
decomposition and so forth have been well developed[62]. 
Accurate control over the microenvironment of 
catalytic sites in MOFs that dominating the molecular/
electron-transfer process and regulating the intrinsic 
activity of catalytic sites have got deeper and precise 
investigations[63]. Furthermore, these materials also exhibit 
superior catalytic performance in a variety of reactions 
such as electrochemical water splitting[64], treatments 
of waste water[65], electrocatalytic/photocatalytic CO2 
reductions[66,67], hydrogen/oxygen evolution reactions[68], 
oxygen reduction reactions, nitrogen reduction 
reactions[69], CO2 selective hydrogenation[70], photocatalytic 
hydrogen peroxide production[71], and photocatalytic 
nitrogen fixation etc[72]. Meanwhile, graphene/MOFs 
composites are also widely used in energy and 
environmental protection fields, which have been 
reviewed by Nazir et al[73]. Furthermore, by means of 
decorations, MOFs derivatives have attracted widespread 
attentions due to their outstanding merits like large 
specific surface area, tunable porosity, unsaturated active 
sites inherited from MOFs precursors and higher water/
thermal stability. Hence, they are further widely applied 
in catalyzing the removal of pollutants from water[74,75]. 
The advantages of using MOFs as catalysts, such as 
high metal-atom utilization efficiency, high reactivity, 
high selectivity and stable reusability etc. stimulate 
researchers to contribute more efforts in this field. The 
other kind of new material, COFs, is also acting as star in 

catalysis field due to adjustable porosities, high thermal 
and chemical stabilities, tunable functionalities and 
flexibility in installing catalytic active sites[76-79]. COFs 
are a class of crystalline porous polymers allowing for 
atomically precise integration of organic building units to 
create order skeletons and nanopores in the repetitive 
manner[77,80]. Based on the structure characteristics of 
COFs, three synthetic methodologies to construct COF-
based catalysts have been systematically developed 
and further well elaborated, which can be simply 
summarized as in-situ synthesis, bottom-up synthesis 
and post-synthetic approaches[76]. Furthermore, COFs 
can be constructed into either two-dimensional or 
three-dimensional porous networks depending on their 
building block dimensions[79,81]. Currently, the post-
synthetic modifications of COFs are introduced, such 
as (1) incorporation of a variety of active metal species 
by using metal complexation through coordination 
chemistry, (2) covalent bond formation between 
existing pendant groups and incoming constituents 
and (3) chemical conversion of linkages, so that 
both unique structure features and reactivity can 
be obtained[82]. Applications of COFs in the field of 
thermal catalysis, photocatalysis and electrocatalysis 
including organic coupling reactions, oxidation-reduction 
reactions, addition reactions, degradation/conversion 
reactions and so on have been all widely explored and 
investigated[83,84]. 

According to their structures and compositions, COF-
based catalysts are classified as COFs with reactive 
skeletons, with reactive pendant groups and with 
reactive metals[76]. Compared with the well-developed 
MOFs and/or COFs-based catalysts, the development of 
MOF/COF composite-based catalysts merely starts[85]. 
These composites include MOF/COF hybrids, including 
MOF@COF and COF@MOF with core-shell structure, 
MOF + COF, C-MOF, and COF-in-MOF. Integration of 
MOFs and COFs is an effective strategy to construct 
new types of catalysts[86]. A detailed description for 
synthesizing a Pd doped MOF@COF core-shell material 
was presented in Figure 8, reported by Sun et al[87]. 

https://doi.org/10.53964/id.2024008
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Figure 8. Schematic Scope of the Preparation of Pd Doped MOF@COF Core-Shell Material. Reproduced from Ref.[87] 
with permission from Wiley.

Despite model catalysts that with precisely controlled 
active sites we commented above, a great deal of model 
reactions, such as CO oxidation, NH3 synthesis/deposition, 
and H2O deposition etc. have been also studied extensively, 
and much dazzling achievements have been made. As 
for the CO oxidation reaction, various catalysts including 
noble-metal based catalysts such as Pt, Au and Pd[88,89], 
non-noble metal catalysts[90] have been synthesized 
successfully wherein efforts towards fulfilling high-catalytic 
performance via chemical-tuning strategies, in which the 
size, structure, shape and degree of alloys are controlled 
to alter the electronic structure, catalyst-oxide support 
interactions and resulting interactions between adsorbates 
and the catalyst etc[91]. Furthermore, detailed CO oxidation 
pathways over typical catalysts with different structural 
characteristics such as single atoms, nanoclusters 
or nanoparticles have been clearly elaborated[92,93] . 
Meanwhile, active species were also clarified[94,95]. Beniya 
et al.[91] had reviewed the progresses that achieved on 
CO oxidation reactions catalyzed by SACs, and then 
addressed the necessity of the development of low-cost, 
environment-friendly automotive catalysts, as shown in 
Figure 9. 

Likewise, systemic investigations on the NH3 synthesis/
deposition reactions[96,97] and H2O deposition reactions[98,99] 
have been conducted. In summary, in-depth systematic 
explorations on both model catalysts as well as model 
reactions are highly effective in establishing surface 
structure-activity relations and identifying active sites. To 
achieve these goals, a prerequisite is to fabricate a series 
of model catalysts with uniform and well-defined surface 
structures varying around specific structural parameters. 
Meanwhile, selecting model reactions that comprised 

of simple components as probe reactions provides 
possibilities to clarify real reaction mechanism.

To date, much efforts have been devoted to these 
field of catalysis, and remarkable achievements have 
been obtained accordingly, which is of great importance 
to improve the quality of human life. Therefore, lights 
have been shed on the conversion and utilization of 
complex reactant systems where compositions, chemical 
bonding and interactions are highly complicated due to 
the vigorous development of catalysis. Totally different 
from the simple systems that comprises of only single 
component, the complex reactant systems such as 
biomass (cellulose, hemicellulose, lignin, and chitin), 
vehicle exhausted gases, wasted plastics and waste water 
etc. have rather complexed compositions. Therefore, 
the catalytic conversion or degradation of these complex 
reactant systems not only faces the challenges that the 
applied catalytic systems should be effective for multiple 
components, but also encounters the obstacles that large 
quantities of pollutants or impurities included in these 
systems would lead to the poisoning or deactivation 
of catalysts. Accordingly, long-term sustainable 
developments would be highly restricted due to these 
reasons. Aiming to address these issues, using smart 
conversion strategies as well as rational protocols and 
powerful toolkits such as precisely designed catalysts 
with finely tuned active sites can devote to accomplish 
this goal. Finally, the full valorization or well disposal 
of these complexes could be achieved. Meanwhile, 
the newly developed analytic methods and advanced 
characterization techniques with high accuracy help to 
clarify the actual reaction mechanisms and guide the 
design of catalysts.

https://doi.org/10.53964/id.2024008
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Figure 9. Necessity of the Development of Low-Cost, Environment-Friendly Automotive Catalysts. Reproduced 
from Ref.[91] with permission from Springer.

2 CATALYTIC CONVERSION OF 
COMPLEX REACTANT SYSTEMS
2.1 The Catalytic Conversion of Biomass

Biomass refers to a wide range of natural organic 
materials, either plant-based or animal-based, that is 
a potential resource for producing chemicals and fuels. 
Among various renewable resources (e.g., solar energy 
and wind, etc.), biomass is the only one containing C, 
H, N and O elements, which endows it unique merits in 
producing value-added chemicals (hydrocarbon, bulk 
and fine chemicals) directly, as shown in Figure 10[100-102].  
Thereby, the exploitation of biomass conversions offers 
great potential for sustainable chemical supplies, as 
an alternative to current fossil fuel based chemical 
manufacturing industries[101,103]. A shift to renewable 
biomass would not only reduce the dependence on 
fossil fuels, but also alleviate the environment-pollution 
concerns about excessive green-house gases emissions, 
which are both beneficial for building a greener Earth[104]. 
Here, we mainly focus on the conversion of lignocellulose 
and chitin. The major components of lignocellulose 
include lignin, cellulose, and hemicellulose. All of them 
are comprised of numerous units and connected by 
complex chemical bonds. For instance, lignin, is a 
complex polymer consisting of various methoxylated 
phenylpropanoid units[105]. Selective scission of the 
crosslinked C-C/C-O bonds would produce aromatic 
products, such as benzaldehydes and phenols[106]. 

As for cellulose, it is intrinsically recalcitrant owing 
to the abundant intra- and inter-molecular hydrogen 
bonds protecting the β-1,4-glycosidic bonds from 
attack by foreign molecule, which renders it difficult to 
be converted[107]. Furthermore, its insolubility in most 

solvents aggravates the difficulty for transformation. 
Only with concentrated mineral acids or supercritical 
liquids can cellulose be depolymerized to a substantial 
degree, and subsequence reactions can be proceeded. 
Hemicellulose with amorphous structure is composed of 
long chains with a variety of pentoses and hexoses, and 
is therefore easier to be degraded than cellulose, but is 
also with high difficulty[108]. Chitin is a linear polymer, and 
the second most abundant natural biopolymer on Earth 
(after cellulose), which is widely distributed in plankton 
and the exoskeletons of insects and crustaceans, and 
organisms. About 100 billion tons of chitin are generated 
per year[109]. Similar to other biomass mentioned above, 
the compositions and chemical-bonding in chitin are 
also highly complex, mainly comprised of N-acetyl 
glucosamine linking by β-(1→4) bonds. One point should 
be noted is that chitin contains natural nitrogen, which is 
totally different from lignocellulose biomass. Therefore, it 
is of great significance to make full use of the N element 
in chitin to prepare nitrogen-containing chemicals[110]. In 
order to achieve the catalytic conversion of biomass to 
produce value-added chemicals, the design of catalytic 
systems with high and tunable performance that can 
selectively cleave crosslinks in biomass and activate the 
target chemical bonds is highly pursued.

2.1.1 The Catalytic Conversion of 
Lignocellulose
2.1.1.1 The Catalytic Conversion of 
Cellulose into 5-Hydroxylmethylfurfural 
(5-HMF) and Levulinic Acid (LA)

Lignocellulosic biomass is consisted of cellulose (30-50 
wt%), hemicellulose (20-40 wt%), lignin (10-20 wt%), 
extractives, and ash etc.[111], and its reserves in nature 

https://doi.org/10.53964/id.2024008
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Figure 10. Utilization of Biomass for Production of Hydrocarbons, Bulk and Fine Chemicals. Chemical Structures 
of Major Components (Lignin, Cellulose and Hemicellulose) of Lignocellulosic Biomass. Reproduced from Ref.[102] 
with permission from The Royal Society of Chemistry.

are abundant. Cellulose is a linear biopolymer of glucose 
units linked by β-1,4-glycosidic bond, where complicated 
inter/intramolecular hydrogen bonds (H-Bonds) network 
between hydroxyl group in cellulose was formed and 
robust crystal structures were produced accordingly[112]. 
5-HMF as well as LA were both listed as important 
platform chemicals by U.S. energy department[113] 
since they can be converted into lots of bio-based fuels 
and value-added chemicals, which provides a desired 
alternative for fossil fuels-based products[114,115]. The 
conversion of cellulose into value-added chemicals is 
promising, and much works have been conducted. For 
the reaction networks from cellulose to 5-HMF/LA/FA, 
cellulose was firstly hydrolyzed into glucose, which was 
then isomerized into fructose, and 5-HMF was obtained 
from fructose via dehydration, and LA was produced 
via rehydration of 5-HMF[116,117]. Therefore, upgrading 
cellulose into 5-HMF/LA was significantly crucial for 
biorefinery of lignocellulosic biomass.

Recalcitrant structure of cellulose is one of the 
challenges for the conversion of cellulose to 5-HMF/LA 
due to its insolubility in most solvent, which leads to 
extremely limited accessibility for solvent molecules and 
catalysts[118]. Meanwhile, another problem for cellulose-
to-5-HMF/LA conversion is repolymerization of reactive 
intermediates and products (i.e., 5-HMF and LA), giving 
much biomass-derived carbon loss and decreasing the 
selectivity and yield of 5-HMF/LA[119]. Therefore, the 
design and adjustment of catalytic systems rationally 
are of great concern for cascade reactions of cellulose to 
5-HMF/LA. For tandem conversion of cellulose to 5-HMF/
LA, both depolymerization of cellulose into glucose and 
isomerization of glucose to fructose are the determining 
step with activation energy of 113.0-180.0KJ·mol-1[120] 
and 59.0-103KJ·mol-1[121], respectively. Therefore, 
homogeneous, heterogeneous or phase-transition 

catalysts with appropriate Lewis acidity and/or Brønsted 
acidity could ensure catalytic performance well for 
converting cellulose to produce 5-HMF/LA. 

2.1.1.1.1 Homogeneous Catalysts 
Mineral acids such as HCl and H2SO4 were widely 

chosen as catalysts for cellulose-to-LA conversion, 
giving moderate yields of LA. Girisuta et al.[122] reported 
1M H2SO4-catalyzed ‘one-pot’ conversion of cellulose 
with loading of 1.7 wt.% to LA with yield of 60.0mol% in 
water at 423K for 2.0h. While lowering the concentration 
of H2SO4 to 0.5M and 0.1M, the yield of LA was both 
decreased due to slow depolymerization of cellulose. In 
KCl-saturated aqueous solution, Qin et al.[123] obtained 
high LA yield of 67.3mol% from 10.0 wt.% cellulose 
catalyzed by H3PO4 at 453K for 1.0h. Furthermore, 
Hu et al.[124] reported an efficient catalytic system for 
the conversion of cellulose or lignocellulosic biomass-
fractionated cellulose with high loading of 15.0 wt.% to 
high-yield LA of 60.8mol% and 80.1mol% catalyzed by 
benzenesulfonic acid in 2-methyltetrahydrofuran and 
water (VMTHF/VH2O = 2/1) biphasic solvent, respectively. 
Ionic liquids (ILs) bearing sulfonic groups or HSO4

- 
anion show good dissolving capacity of cellulose via 
forming competing H-Bonds of ILs with hydroxyl 
group of cellulose[125] and behaved well for catalytic 
conversion of cellulose to LA. Due to the lack of Lewis 
acidity, Brønsted acid-catalyzed HMF formation from 
cellulose showed low catalytic activity[126,127]. Compared 
with Brønsted acids, metal salts or bifunctional acid-
base organic catalysts exhibited excellent catalytic 
performance for HMF/LA formation from cellulose 
due to Lewis acid or Brønsted base-catalyzed rapid 
glucose-to fructose isomerization and dehydration of 
fructose. It has been reported that metal species such 
as [Cr(OH)2(H2O)4]+[128] and [Al(OH)2(H2O)4]+[129] could 
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coordinate with glucose helping the isomerization of 
glucose to fructose via 1,2-H transfer[130] , followed by 
rapid dehydration of fructose to 5-HMF and rehydration 
of 5-HMF to LA catalyzed by Brønsted acid due to 
its lower activation energy. In γ-valerolactone (GVL) 
and water (VGVL/VH2O = 17/3) mixed solvent, a high 
LA yield of 88.5 mol% was obtained from 1.5 wt.% 
cellulose catalyzed by heteropolyacid H3PW12O40 with 
bifunctional Lewis and Brønsted acidity at 468K for 
2.0h[131]. Compared with LA, 5-HMF was more unstable 
and was ready to repolymerization, especially at high 
reaction temperature. Hence, bifunctional Lewis and 
Brønsted catalysts combined with organic and water 
mixed/biphasic solvent was a better choice for the 
conversion of cellulose to 5-HMF. Gong et al.[132] used 
the prepared cellulose formate as the substrate for the 
synthesis of 5-HMF catalyzed by 0.1M AlCl3 and 0.05M 
HCl in dimethyl sulfoxide (DMSO) and water (VDMSO/VH2O 
= 4/1) mixed solvent at 423K for 0.5h, yielding 67.3 
mol% 5-HMF. Shi et al.[133] reported Al2(SO4)3-catalyzed 
conversion of high-loading cellulose of 33.0 wt.% to 
5-HMF with the yield of 71.2 mol% in tetrahydrofuran-
cyclohexane (THF) and water biphasic solvent (VTHF-CHX/
VH2O = 19/3) at 453K for 1.0h. 

Homogeneous catalyst-catalyzed conversion of 
cellulose to 5-HMF/LA showed high catalytic activity due 
to easily controllable Lewis and Brønsted acidity with the 
help of solvent. However, stabilization of intermediate and 
products from cellulose deserve further considerations 
for its rapid repolymerization catalyzed by homogeneous 
catalyst.

2.1.1.1.2 Heterogeneous Catalysts
Lots of heterogeneous catalysts such as metal oxides, 

zeolites, metal phosphates, carbon materials, and organic 
materials was prepared for the conversion of cellulose to 
5-HMF/LA due to its recyclability and adjustable Lewis/
Brønsted acidic sites compared to homogeneous ones. 
Potvin et al.[134] utilized ion exchange resin as solid acid 
catalysts to catalyze the depolymerization of cellulose 
and further conversion of glucose to 72.0 mol% LA in 
NaCl-saturated aqueous solution at 463-473K for 5.0d. 
Ding et al.[135] reported the Al-modified NbOPO4 as 
catalyst for synthesis of LA from 5.0 wt.% cellulose in 
water at 453K for 24h, obtaining 52.9 mol% LA. Due 
to limited contact between cellulose and solid catalysts, 
the catalytic performance of heterogeneous catalysts 
behaved not well for depolymerization of cellulose. Yu et 
al.[136] prepared a hyperbranched poly(arylene oxindole)s 
organic material grafting by -Cl and -SO3H groups (5-Cl-
SHPAO) with -Cl groups interacting with hydroxyl groups 
of cellulose, which catalyzed the conversion of cellulose to 
LA with the yield of 48.0 mol% in water at 438K for 5.0h. 

For cellulose-to-5-HMF, metal oxides, metal phosphates, 
and zeolites bearing both Lewis and Brønsted acidic sites 

catch the fancy of 5-HMF synthesis from cellulose. Atanda 
et al.[137] modified TiO2 with phosphate group to get 
functionalized surface that with both Lewis and Brønsted 
acidity. Ball-milling cellulose was converted to 5-HMF 
with high yield of 86.2 mol% catalyzed by P-TiO2 in THF-
NMP/NaCl-saturated aqueous biphasic solvent (VTHF-NMP/
VH2O=4/1) at 453K for 105min. Cao et al.[138] designed 
the hafnium phosphate catalyst with various ratio of Hf/
P, which could endow this catalyst with different Lewis/
Brønsted acid densities, where 69.8 mol% 5-HMF was 
yielded from 2.0 wt.% cellulose catalyzed by (HfO)(PO4)2 
in THF/NaCl-saturated aqueous biphasic solvent at 463K 
for 4.0h. To increase the contact between catalysts and 
cellulose, choline ion-functionalized HY zeolites was utilized 
to catalyze the conversion of cellulose to 5-HMF, giving 
55.0 mol% 5-HMF in methyl isobutyl ketone and NaCl-
saturated aqueous biphasic solvent (VMIBK/VH2O=3/1) at 
453K for 3.0h[139]. 

Although heterogeneous catalysts showed excellent 
performance for cellulose-to-5-HMF/LA conversion, 
these catalytic systems still suffered from high reaction 
temperature and long reaction time, massive usage of 
organic solvent, and equipment-corrosive NaCl, due 
to limited solid-solid contact between catalysts and 
cellulose.

2.1.1.1.3 Phase-transition Catalysts
Phase-transition catalysts possess the advantages of 

both homogeneous and heterogeneous, overcoming the 
difficult recovery of liquid acid and restricted contact of 
solid acid. Zhang et al.[140,141] prepared choline-modified 
heteropoly-acid via facile ion-exchange, which was 
insoluble at room temperature and soluble at reaction 
temperature in water. High yield of 5-HMF and LA over 
70.0 mol% could be obtained from cellulose at low 
reaction temperature below 413K. However, losses of 
catalysts appeared during the recovery of catalysts via 
recrystallization. 

Compared to other types of catalysts, phase-
transition catalysts are more desirable. In summary, 
these catalytic systems made great progresses for 
conversion of cellulose to 5-HMF/LA. Rational design 
of catalysts should be considered, including: 1) 
increasing the interaction of catalysts with cellulose 
via decorating the surface property of catalysts or 
solvent effects; 2) controlling the cascade reaction 
rate of depolymerization, isomerization, dehydration 
via functionalizing appropriate Lewis and/or Brønsted 
acidity; 3) decreasing the accessibility of products for 
catalysts; and 4) recycling of catalysts. 

2.1.1.2 The Catalytic Conversion of 
Lignocellulose to GVL

GVL, which is accessible from renewable ligno- 
cellulosic biomass, has been identified as one of the 
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most promising platforms for the sustainable production 
of fuels and value-added chemicals[142,143]. As shown 
in Figure 11, the reactions of lignocellulose to produce 
GVL are summarized, which can be performed through 
two paths. In the first path, cellulose is hydrolyzed 
to glucose and then isomerized to fructose, followed 
by further dehydration to form 5-HMF, which would 
be decomposed to form LA or levulinate. Finally, a 
hydrogenation-cyclization cascade reaction transforms 
both LA and levulinate into GVL[144,145]. In the other 
transforming path, hemicellulose, is firstly hydrolyzed 
to xylose. Later, it transforms to FAL, FAL alcohol and 
LA subsequently through continuous dehydration 
reactions. Finally, LA undergoes hydrogenation process 
to produce GVL. Therefore, it is very clear that the 
reaction networks for producing GVL from biomass is 
highly complicated, and LA is one of the indispensable 
intermediates. To accomplish the goal for producing 
GVL from biomass directly, demands on rational design 
of catalysts and precisely control of desired reactions 
should be meet. 

Actually, researches focused on the formation of 
GVL from LA have been widely reported[146,147], which 
lays solid foundation for the conversion of biomass 
to produce GVL. However, compared to pure LA, 
direct utilization of raw biomass as feedstock for 
GVL production is more cost-effective, because of 
the elimination of biomass pretreatment and the 
accomplishment of minimal processing steps[148]. In 
General, an integrated approach, relative to one-pot 
multi-step process, is widely adopted when producing 
GVL from biomass. Wherein, an acidic catalyst is 
employed to catalyze several consecutive reactions 
to yield LA, which is further upgraded to GVL with the 
assistance of metal catalyst.

Galletti et al.[149] reported the straight production 
of GVL directly from water slurries of giant reed by 
adopting bifunctional (acid and hydrogenating) catalytic 
systems based on Ru/C and NbO or NbOPO4. Mild 

Figure 11. Reactions for Producing GVL from Hemicellulose and Cellulose in Lignocellulosic Biomass. Reproduced 
from Ref.[144] with permission from Elsevier.

reaction conditions (0.5MPa of hydrogen and 70℃) 
were possible for the hydrogenation step. GVL yield 
up to 16.6 wt.% calculated from the starting weight 
of dry biomass was reached, with an almost complete 
and selective conversion of the intermediate LA. Later, 
Ding et al.[135] realized the direct catalytic conversion 
of cellulose to GVL through sequential reactions that 
LA was firstly formed by using niobium-based solid 
acids with aluminum modified (Al-NbOPO4), and LA 
was further upgraded to GVL on a commercial Ru/C 
catalyst. It was found that the doping of Al enhanced 
the intensities of Lewis and Brønsted acids, especially 
the strong Lewis acid, thus resulting in the increase 
of LA yield from cellulose. Finally, a higher GVL yield 
from cellulose was achieved. Another integration that 
combined a highly cross-linked ionic liquid polymer 
(PDVB-IL) and Co/TiO2 to catalyze the degradation of 
cellulose was reported, and this catalytic system gave an 
overall GVL yield of 55%[150]. A combination of H3PW12O40 
with Ru/TiO2 catalyst was also proved to be effective for 
GVL production from inulin with 70.5% yield. Cao and 
colleagues obtained a GVL yield in a range of 57% (from 
sucrose), 50% (from starch) and 33% (from cellulose) 
over H2SO4 and Au/ZrO2-VS catalyst[151]. A cheap Cu-
based catalyst Cu/ZrO2-OG, cultivated by the same 
group also showed good catalytic performance for the 
conversion of giant reed through the one-pot process, 
and the yield of GVL decreased to 18.5% (based on 
the weight of dry biomass)[152]. A three-step method 
had been developed for the selective conversion of 
hemicellulose in pubescens to GVL by Pt/C catalysts 
without the addition of external hydrogen, reported by 
Luo et al[153]. A high yield of 20.0% GVL based on the 
weight of pubescens with a high selectivity of 90.5% 
was achieved. The reaction procedure was shown in 
Figure 12. By well characterizations, platinum species 
were found to interact with the carboxylic and lactonic 
groups of activated carbon, and the Pt (220) surface 
might exhibit high activity for the conversion of LA and 
formic acid (FA) to GVL. Besides, the Pt/C catalyst was 
effective for the in-situ generation of hydrogen due to 
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Figure 12. The Origin of GVL from an Aqueous Mixture Derived from Hemicellulose in Pubescens. Reproduced from 
Ref.[153] with permission from the Royal Society of Chemistry.

the high selectivity towards the decomposition of FA.

Later, the same group developed a two-step 
integrated strategy for GVL production from FAL residue. 
Wherein, LA and FA were produced from furfural (FAL) 
residue using SnCl4 as a catalyst in the first step, and 
the obtained products were subsequently employed as 
feedstock for GVL production by a developed bimetallic 
Au-Ni/ZrO2 catalyst in the second step[154]. This work 
also gave a potential strategy for producing GVL directly 
from raw lignocellulosic biomass without external 
H2. Characterizations revealed that the loading of Ni 
promoted the reduction of Auδ+ to Au0, and facilitated 
Au0 dispersion with less aggregation, which improved 
the hydrogenation ability of this catalyst.

2.1.1.3 The Catalytic Conversion 
of Lignocellulose to FAL and Other 
Chemicals

Except the above-mentioned chemicals produced 
from biomass via catalytic degradation, other types 
of chemicals can be also obtained[155]. FAL, another 
type of important chemical, is mainly produced from 
hemicellulose. Both homogeneous and heterogeneous 
catalysts were adapted. For example, Zhang et al.[156] 
reported the preparation of FAL from pine wood with 
33.6% yield by AlCl36H2O with the assistant of ionic 
liquid (1-butyl-3-methylimidazolium chloride). Besides, 
thiourea could also promote the yield of FAL from 
empty fruit bunch by using H2SO4 as catalysts, and 
the corresponding yields increased from 33. 8% to 
61.0%[157]. Effective heterogeneous catalysts towards 
the catalytic degradation of hemicellulose to FAL had 
been also reported, such as WO3/SiO2 and Ga2O3/
SiO2

[158], zeolite SAPO-34[159], ZSM-5[160] etc., and the 
resultant FAL yields varied from 55-67%. By rationally 
designing a two-phase solvent system (GVL/water), 
the yields of FAL from corn stover and Eucalyptus 
sawdust catalyzed by SAPO-18[161] and H-SAPO-34[162] 
increased significantly to 95% and 99%, respectively. 

For the production of other value-added chemicals, 
Wang et al.[107] used 2%Ni-30%W2C/AC catalyst to 
convert cellulose to ethylene glycol (EG) via a hydrolytic 
hydrogenolysis method successfully at 503-523K and 
6-10MPa H2, achieving 73.0% yield of EG . However, 
when applying this catalyst to convert birch wood, 
without any pretreatment, EG yield reduced sharply to 
38.8% since it was found that the lignin component in 
the corn stalk significantly inhibited the conversion of 
cellulose to EG. Therefore, delignifying pretreatment 
must be conducted prior to the reaction. Besides, 
organic silicon especially tetraethyl orthosilicate (TEOS) 
could be also obtained from rice straw that contained 
a large amount of Si. Compared to the industrial 
production process of TEOS using SiCl4 or Si with multi-
steps, where huge amount of HCl was used/produced 
or harsh conditions were needed, the direct production 
of TEOS from biomass represented a greener approach 
and showed greater potential. Fukaya et al.[163] used 
strong bases and a significant amount of dehydrating 
agent to promote the reaction of rice hull ash (The 
main component was SiO2) with ethanol to get TEOS. 
Sun et al.[164] used the real raw biomass (rice straw) 
to reacted with ethanol to obtain TEOS successfully. 
Meanwhile, it was found that reaction temperature 
influenced reactions remarkably, and the removal of 
lipids from rice straw facilitated the production of TEOS, 
giving the highest TEOS yield of 76.2%. In addition, 
silicon in different biomasses behaved differently in 
the production of TEOS, which might be related to the 
complex growth processes of the plants. Until now, 
there were few works focused on the direct catalytic 
conversion of biomass (such as rice straw) to TEOS, 
however, it can be predicted that more satisfied results 
can be obtained when proper catalysts have been 
designed and synthesized to promote this process. 

In conclusion, at present, many studies that focused 
on the production of 5-HMF, LA, GVL, FAL, EG, TOES etc. 
from real biomass, cellulose, hemicellulose, and their 
derivatives have been reported. Scholars are continuing 
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to explore multifunctional catalysts with high stability 
and efficiency. Meanwhile, the researches on exploring 
innovative catalytic systems to achieve high efficiency, 
safety, energy savings and environmental protection are 
also the focuses of them. 

However, we should realize that the conversion of 
lignocellulose biomass is far more difficult than we 
imagine now. In fact, much works that focused on 
the conversion of biomass merely chose one single 
component such as cellulose or lignin that comes 
from the real biomass, which cannot represent the 
real biomass at all. The separation of these single 
components from real biomass is not simply a 
physical separation process. On the contrary, much 
chemical reactions occur, and interactions between 
different components simultaneously contribute to 
influence the separation process[165,166]. Meanwhile, 
the reaction networks for producing these chemicals 
are rather complicated than we think. Taken the 
conversion of biomass-derived hexose as example, 
due to the existence of multiple hydroxy groups in 
a hexose molecule, the protonation may occur at 
different positions leading to a variety of dehydrated 

intermediates, and then various products and side 
products form. Undoubtedly, these undesired parallel 
and consecutive side reactions lead to the low 
selectivity and higher difficulty in precise control. On 
account of the conformational complexities of the 
feedstock and the coexistence of multiple dehydration 
intermediates/products/side products, the reaction 
types involved in glucose dehydration are also diverse, 
including isomerization, dehydration, decarbonylation, 
decarboxylation, rehydration, retro-aldol condensation, 
and multiple polymerizations etc[167]. The diverse 
reaction types thereby constitute a complex reaction 
network, as illustrated in Figure 13. One thing should 
be noted is that not only reactions can occur between 
initial substrates, but also between initial substrates 
and intermediates, intermediates and intermediates, 
products and intermediates or even products and initial 
substrates. The high complexity in reaction networks 
for converting model biomass molecular hexose have 
already significantly restricted the selective production 
of targeted products, not to say the conversion of real 
biomass. Proper or new degradation strategies are still 
urgently needed to be developed to achieve the full 
utilization of lignocellulose.

Figure 13. The Complex Reaction Network for Glucose-to-HMF Transformation Where G Value Indicates the 
Reaction Free Energy with a Unit of kJ·mol-¹. Reproduced from Ref.[168] with permission from Elsevier.
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Figure 14. The Concept of Shell Biorefinery. Reproduced from Ref.[170] with permission from Wiley.

2.1.2 The Catalytic Conversion of Chitin
At the beginning, the valorization and utilization of 

shrimp shell or chitin were mainly conducted via bacterial 
or fungal fermentations and enzymatic degradation. For 
instance, Serratia marcescens B742 and Lactobacillus 
plantarum ATCC 8014 were effective in degrading 
chitin[169]. However, the high cost of enzymes and the 
low efficiency were some of the pitfalls of this strategy. 
Catalytic conversion of chitin gradually grabbed the 
attention of researchers. Under the guide of ‘shell 
biorefinery’ concept (as shown in Figure 14), distinctive 
protocols have been established to chemically transform 
chitin to amino sugars, amino alcohols, furanic amides, 
and N-heterocycles etc[110,170]. 

As for the overall conversion strategies towards 
chitin, firstly, the chitin polymer was decomposed into 
monomeric or oligomeric molecules with different 
functionalities on the side chains through selective 
depolymerization, deacetylation, and functionalization, 
whereas the glucosamine C6 backbone was maintained. 
This strategy was easy to carry out under rather milder 
conditions, but the obtained products were somehow 
simple with relatively low added-value. In the other 
category, the C6 backbone underwent breakage and 
rearrangement, leading to more diversified products. 
This method required high temperature to promote the 
cleavage of chemical bonds and more side reactions 
would occur accordingly.

The deacetylation of chitin led to the formation of 
chitosan, and its further depolymerization afforded 
low-molecular-weight chitosan (LMWC), which were 
both important compounds since they were featured 

with excellent antibacterial and antitumor properties. 
Chen et al.[171] established a one-step, solvent-free 
mechanochemical method to transform chitin and raw 
shrimp shell powders to LMWC. The base catalyst, NaOH, 
was found to not only facilitate chitin transformation into 
LMWC but also inhibited side reactions under ball milling 
conditions. Similarly, Yabushita et al.[172] showed that 
the depolymerization of chitin with a catalytic amount 
of H2SO4 rather than base could also give soluble short-
chain oligomers. Subsequent hydrolysis of the ball-
milled sample provided N-acetylglucosamine (NAG) with 
53% yield, and methanolysis afforded 1-O-methyl-N-
acetylglucosamine in yield of up to 70%. Despite strong 
base or acid could promote the depolymerization of chitin, 
effective solvent systems were indeed another ideal 
option. In 2020, Gözaydın et al.[173] established acidified 
lithium halide molten salt hydrate (AMSH) systems to 
convert native chitin into NAG effectively. 71.5% yield of 
NAG was achieved in LiBr AMSH containing only 40mM 
HCl at 120℃ after 30min. Likewise, several water-organic 
co-solvent systems had been studied and established 
for chitin depolymerization[174]. The effects of cosolvent 
types on conversion efficiency and product selectivity had 
been deeply explored. Water-free co-solvent systems, 
such as EG, FA etc. used for the conversion of chitin had 
been explored[175,176]. Finer nitrogen-containing chemicals 
were also obtained by catalytic conversion of chitin. For 
example, glucosaminic acid (GlcNA), an important amino 
acid applied in food, asymmetric synthesis, and medicines 
that could be generated by following a depolymerizaion-
deacetylation-oxidation sequence[174]. Dai et al.[177] 
reported a two-step process by Amberlyst-15 and Au/
MgO catalysts to produce GlcNA from chitosan (a 
typical chitin derivative) with an overall yield of 36%. 
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Hydroxyethyl-2-amino-2-deoxyhexopyranoside (HADP) 
and hydroxyethyl-2-acetamido-2-deoxyhexopyranoside 
(HAADP) could be prepared under the catalysis of 
sulfuric acid in EG[175]. The conversion of NAG that 
originated from chitin to its corresponding amide/amino 
substituted sugar alcohols, smaller C2-C4 polyols and 
N-acetylmonoethanolamine had been reported over Ru/
C catalysts in the presence of hydrogen in water[178]. 
A single compound, 5-(formyloxymethyl) furfural with 
35% yield after a longer reaction time from chitin was 
reported by using formic acid as catalyst[176]. As for the 
straightforward method mentioned above, the core is 
to develop efficient solvents and catalysts to break the 
glycosidic bonds. Especially, developing catalysts with 
high selectivity is essential. Besides, pretreatments, 
such as ball milling, are also often involved to facilitate 
subsequent chemical reactions. 

Further treatments of chitin that lead to the breakage 
and rearrangement of C6 backbone would help to get 
more diversified products. For example, 3-acetamido-
5-acetylfuran (3A5AF), as a kind of versatile 
pharmaceutical precursor that produced mainly through 
the Haber process relying on fossil feedstocks[179]. 
Several works had reported the direct transformation of 
chitin into 3A5AF with a yield of 7% by using boric acid 
and alkaline chlorides as catalysts[180], and of 15.4% 
by using boric acid and HCl as catalysts in ionic liquid 
[BMIm]Cl[181]. Subsequently, it was further increased to 
28.5% using a ball milling pretreatment technique[182]. 
Later, a range of organonitrogen chemicals derived 
from the upgrading of 3A5AF, such as 2-acetyl-4-
aminofuran, 3-acetamido-5-(1-hydroxylethyl)furan and 
anticancer alkaloid proximicin had been also obtained, 
which further promoted the valorization of chitin[183,184]. 
A report focused on the conversion of chitin and waste 
shrimp shells into acetic acid and pyrrole by catalytic 
method using metal oxide (CuO, CeO2) and oxygen gas 
in basic water was shown. 38.1% and 47.9% yields of 
acetic acid were produced from chitin and crude shrimp 
shells, respectively[185]. Natural product syntheses 
(including Rhizochalinin, Pochonicine, Allosamizoline 
etc.) using chitin/chitosan represented another 
promising prospectives for the utilization of chitin[186,187]. 
Recently, a novel integrated biorefinery method for 
chitin upgrading had been established, which combined 
shrimp shell waste catalytic pretreatment and biological 
fermentation to transform shell waste to tyrosine and 
L-DOPA (a frontline drug treating Parkinson’s disease). 
These chemicals were previously unavailable from 
chitin by traditional chemical processes. This new 
protocol provides an alternative pathway to synthesize 
valuable aromatic amino acids from renewable chitin 
feedstock[188]. 

In conclusion, different strategies have been attempted 
to convert chitin to products with distinct structures. 

An effective dehydration catalyst with high catalytic 
performance with a proper solvent medium that can 
weaken the hydrogen bonding network in chitin is critical. 
However, there is still a long way for us to explore the 
utilization of chitin since its high complexity. In terms of 
these already achieved results, deeper explanations on 
reaction mechanisms when converted chitin to whatever 
products have not been reported, which is mainly ascribed 
to the high complexity of chitin. Therefore, advanced 
or even new convert strategies should be cultivated 
further.

2.2 The Catalytic Conversion of Plastic 
Wastes

Plastic products are used in almost all aspects of daily 
life because of their low cost, durability, and portability 
etc. Besides, the use of plastic products is rising per year. 
The mass production and the subsequent accumulation 
of waste-plastic products in Nature have caused serious 
environmental and management problems[189,190]. 
Therefore, proper and effective recycling methods should 
be developed. The diagram for upcycling plastics of its life 
circle is shown in Figure 15. 

However, plastics, as a kind of typical polymer of 
large- or macro-molecule with highly repetitive subunits 
(or monomer units) that are linked to each other by 
specific types of chemical bonds, which brings out 
much difficulties in upcycling. Fortunately, significant 
progresses have been achieved. Indeed, there are many 
excellent reviews summarized the works focused on the 
conversion of plastic waste via bio-degradation[191-193], 
photocatalysis[194,195], electrocatalysis[196] and thermal 
catalysis etc[197,198]. Here, we briefly discussed the 
potential catalytic degradation strategies. Three 
strategies have been proposed based on whether 
a specific intermediate molecule is designed on the 
route of polymer transformation and the type of the 
intermediate molecule: (1) polymers are depolymerized 
to monomers, oligomers, or their derivatives, followed 
by the upcycling into high-value chemicals; (2) 
polymers are degraded into small platform molecules 
(e.g., CO2, CH4, FA, and methanol) and then upcycled 
into high-value chemicals; and (3) polymers are directly 
transformed into high-value chemicals[199]. There are 
advantages as well as disadvantages for each strategy. 
Usually, high yields of products can be achieved via 
the first strategy. However, it requires a high purity 
of substrate, and only polymers that comprised of 
single monomers can be totally converted, which is 
difficult to apply for practical use. The second one has 
advantages for producing various products but with 
rather lower atom utilization. The third one is beneficial 
for not requiring pretreatments or multi-conversion 
steps, leading to the reduced energy consumption and 
production costs. However, it is more demanding on the 
catalysts with superior catalytic performances.
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Figure 15. The Diagram for Upcycling in the Life Cycle of Plastics, Leading to Formation of New Polymers, 
Molecular or Materials. Reproduced from Ref.[189] with permission from Springer.

López-Fonseca et al.[200] used different types of metal-
salt such as zinc acetate, sodium carbonate, sodium 
bicarbonate, sodium sulphate and potassium sulphate 
as catalysts to convert polyethylene terephthalate (PET) 
into monomers. Comparable high yields (≈70%) of 
the monomer bis(2-hydroxyethyl terephthalate) were 
obtained with zinc acetate and sodium carbonate as 
depolymerization catalysts at 196℃. Moreover, other 
types of catalysts such as organic bases, solid acids, 
and metal oxides were also employed to degrade PET 
into monomers[201]. The second step for converting 
the formed monomers was more meaningful since it 
provided opportunity to synthesize different value-
added chemicals. For instance, under thermo-
catalytic conditions, the obtained monomers, dimethyl 
terephthalate, or bis(hydroxyalkyl) terephthalate from 
glycolysis in the presence of zinc(II) acetate catalyst, 
could be further hydrogenated or hydro-deoxygenated 
to dimethyl cyclohexane-1,4-dicarboxylate, 
1,4-cyclohexanedime-thanol by Ni-based[202] and 
RuPtSn/Al2O3 catalysts[203] respectively, or gasoline 
and jet fuel range C7-C8 cycloalkanes and aromatics by 
using Pt/C catalysts[204]. In addition, under photo- or 
electro-catalytic conditions, the EG units of PET could be 
oxidized into glyoxal or formate in aqueous alkaline with 
H2 produced simultaneously over a carbon nitride/nickel 
phosphide catalyst[205]. Continuing with this guide line, 
other waste-plastics with ester or amide bonds, such 
as polyurethane (PU), polystyrene (PS), polycarbonate 
(PC), and polylactic acid (PLA), could be also upcycled 

by degrading into monomers. 

Extensive progresses over the conversion of building-
block molecules (such as CO2, CH4, CO and CH3OH etc.) 
into fuels and other high value-added chemicals have 
been obtained, therefore, the degradation of waste-
plastic into these small platform molecules is also of 
great significance to chemical industries. As an example, 
Jiao et al.[206] accomplished the photodegradation of PE 
with 100% conversion into CO2 within 40 h by single-
unit-cell thick Nb2O5 layers, while the produced CO2 
could be further reduced to CH3COOH. This two-step 
waste-plastic-to-fuel conversion might help to solve the 
white pollution crisis and harvest highly valuable multi-
carbon fuels in natural environments simultaneously. 
Meanwhile, the same group reported photo-catalyzing 
plastics to syngas by Co-Ga2O3 nanosheets[207]. In this 
process, H2O was photo-reduced into H2, while non-
recyclable plastics including PE plastic bags, PP plastic 
boxes and PET plastic bottles were photodegraded into 
CO2, which was further selectively photo-reduced into 
CO. CH4 could also be obtained when transforming 
waste-plastics such as PE, PP and PS, reported by Lee 
et al[208]. They described that the Ru-modified zeolite 
exhibited excellent catalytic performance that grid-
compatible methane (>97% purity) was obtained at 
300-350℃ using near-stoichiometric amounts of H2, 
which might increase the intelligent use of plastic waste 
via energy recovery. A nickel-based catalyst involving 
Ni2Al3 phase enabled the direct transformation of mixed 
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polyolefin plastics into natural gas, and the gas carbon 
yield reached up to 89.6%, presenting by Fang et al[209]. 

For the third strategy that polymers are directly 
transformed into high-value chemicals, it is the most 
difficult yet the most attractive. The core is to design 
catalytic systems rationally based on precise chemical 
bonds activation and proper chemical bonds cleavage, 
which is hopeful to achieve the disassembling of plastics 
by H2. Direct hydrogenolysis could lead to the cleavage 
of ester bonds, carbonate bonds, amide bonds, and 
urethane bonds etc. Lee et al.[208] reported the first 
example of converting PU to produce diol, diamine, and 
methanol in the presence of a ruthenium pincer catalyst 
at 150℃ and 70bar H2. Similarly, PU could be also 
transformed into diols, diamines, and methanol by using 
metal or metal oxide complexes under the presence of 
reducing agents (silanes)[210,211]. In 2020, Wang et al. 
reported the first example of the upgrading of various 
aromatic plastic wastes with C-O and/or C-C linkages to 
arenes (up to 75-85% yields) via catalytic hydrogenolysis 
over a Ru/Nb2O5 catalyst, which not only allowed the 
selective conversion of single-component aromatic 
plastic, and more importantly, enabled the simultaneous 
conversion of a mixture of aromatic plastic to arenes[212]. 
The work diagram of Ru/Nb2O5 catalyst to cleavage 
C-O and C@C bond of waste plastics was displayed in 
Figure 16, wherein the circular plastic economy could 
be achieved. Later, deeper work done by them showed 
a self-supported hydrogenation process of PET with 
H2-free hydrogenation system to generate benzene, 
toluene, and xylene (BTX)[213]. Ni2P catalysts were also 
proved to be effective towards the conversion of PET to 
BTX fraction[214]. The Co-Fe-Al catalyst containing CoFe 
alloy with tailored structural features could achieve 
xylene yields of >99.0% from PET[215]. Recently, Ma 
and coworkers achieved the one-pot direct amination 
of polylactic acid (PLA) to alanine catalyzed by Ru/TiO2 
in ammonia solution, without the addition of external 
hydrogen. PLA was depolymerized to lactamide and 
ammonium lactate, and the following dehydrogenation 
of ammonium lactate on Ru nanoparticles initiated 
the amination, leading to the formation of alanine[216]. 
Besides, by combining a homogeneous catalyst (Hf(OTf)4) 
and a heterogeneous hydrogenation catalyst (Pd/C), PET 
were depolymerized into dicarboxylic acid and ethane 
under 1atm.

H2, revealed by Kratish et al[217] . PET could also 
be completely converted into alkanes, dominated 
with cyclohexane and methane by Ru/TiO2 under the 
optimal conditions (200℃, 60bar H2, and small amount 
of H2O)[198]. Also, a CeO2-supported Ru nanoclusters 
catalyst showed good hydrogenolysis ability towards 
low-density PE, leading to the formation of alkane 
fuels[218]. All of these studies provide possibilities to 
selective degradation of plastic-wastes, which not 

only helps to alleviate the environment pollutions, but 
also contributes to achieve the full utilization of waste 
plastics.

Except the conversion of waste-plastics that only 
comprised of mono-components such as PET, PE, PP, 
PVC, PU, PS, and others, we should pay more attention 
to the conversion of mixed-plastic wastes since they are 
closer to the actual human life and recycle situations. For 
the chemical conversion of mixed-plastic wastes, there 
are two main strategies that have been proposed[219]: 
(1) transformation of mixed plastics into a product with 
a simple composition, and (2) stepwise transformation 
of the mixed plastics. The first strategy underscores 
the conversion of mixed polymers into simple products, 
such as CO, CH4 or H2, or a valuable hydrocarbon, like 
ethylene or fuels that can be used directly. It follows the 
same guideline for converting mono-composition plastic 
as we mentioned before. Once these mixed plastics are 
depolymerized into smaller molecules, we can further 
convert them into value-added chemicals through 
established catalytic methods. It should be noted that 
real-life plastic waste contains various toxic contaminants, 
which could potentially inhibit the transformation process. 
Thus, developing a robust catalyst that can tolerate 
contaminants is crucial for the success of this strategy. 
The second strategy involves separating and transforming 
mixed plastics into valuable chemicals in a step-by-step 
manner. Firstly, efficient extraction or separation methods 
allow us to separate these complicated plastics, and later, 
catalysts with high-catalytic performance allow us to 
harness the potential of each polymer component of the 
mixed plastic-wastes. Ultimately, to realize viable catalytic 
processes to deconstruct and upcycle waste plastics, 
the actual mechanisms of obtaining intermediates 
for upcycling via a depolymerization process or direct 
hydrogenolysis must be clear. Therefore, advanced 
monitoring and analyzing methods, characterization 
techniques and even in-situ reactions coupled with 
detection systems are highly pursued. 

Towards the conversion of plastics, difficulties are 
mainly arisen from the complex chemical bonding in 
these polymers. However, it is far more complicated 
for recycling waste plastics since not only chemical 
bonding is complex, but also different types of polymers 
with different monomers are usually mixed as well as 
pollutants that can lead to the deactivation of catalysts. 
Thereby, more attentions are still needed to pay to 
achieve the efficient conversion of waste plastics.

2.3 The Catalytic Conversion of Vehicle 
Exhausted Gases

In recent decades, the environmental protection 
and long-term sustainability have become the focus 
of attention due to increasing pollution generated 
by the sharp increase of vehicles and intense 
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Figure 16. The Integration of C-O and C-C Bond Cleavage Catalyst (Ru/Nb₂O₅) into the Circular Plastic Economy. 
Reproduced from Ref.[212] with permission from Wiley.

industrialization[220]. It should be noted that there are 
some differences in the amount of toxic gas emissions 
released by different types of fuel vehicles, but harmful 
emissions with high composition complexity including 
NOx, COx, unburned alkanes, and solid particles etc. 
could be observed at all situations[221,222]. To overcome 
environmental issues caused by these vehicle exhausted 
gases, environmental catalysis has increasingly been 
used to solve the negative impacts of pollutant emissions 
on the global environment and human health. However, 
when the main pollutants in the tail gas COx, HC and 
NOx contact with catalysts, oxidation and reduction 
reactions occur on the catalyst at the same time with 
high complexity, and subsequently being converted 
into harmless CO2, H2O and N2. Actually, there are 
more than 400 reactions involved in this process, such 
as but not limited to these reactions: 2CO+O2→2CO2; 
CHx+(1+x/4)O2→CO2+x/2H2O; 2CO+2NO→2CO2+N2; 
CHx+2NO→CO2+x/2H2O+N2; 2H2+2NO→2H2O+N2; 
CO+H2O→CO2+H2; CHx+2H2O→CO2+(2+x/2)H2. 
Moreover, the real reaction mechanisms are still being 
explored. The above commented factors come to be 
one of the main reasons for its high conversion difficulty. 
Meanwhile, catalyst poisoning is also annoying, and high 
production costs and production discontinuity problems 
arise subsequently. Therefore, exploring robust 
catalysts with perfect catalytic performance towards the 
elimination of these exhausted gases simultaneously 
comes to be the focus in this field. 

A worldwide effort to reduce vehicle emissions 
is advancing, which helps to build a greener, more 

sustainable Earth for mankind. The development of 
catalysts used for treating these exhausted gases 
has gone through three stages. The first generation 
of catalysts for vehicle exhausted gas purification 
was oxidation catalysts, with Pt and Pd as the main 
active components since Pt and Pd had high catalytic 
activity and stability towards the oxidation reaction 
of CO and CHx, which had experienced prosperous 
development between 1975-1980s[223,224]. Later, with 
the stricter requirements for controlling NOx pollutants, 
the developed oxidation catalysts could no longer meet 
the requirements. Accordingly, the second generation 
of catalysts was three-way catalysts (TWCs) that could 
deal with CO, CHx and NOx simultaneously. Further 
modifications on the earlier-developed TWCs that 
contained noble-metals or non-noble metals became 
the third generation of catalysts. A detailed description 
of each type of catalyst will discuss later.

Firstly, Pt and Pd-based catalysts were found to be 
highly active and stable for the oxidation of CO and CHx, 
and the reactions occurred according to the following 
equations:

CO+1/2O2→CO2; CHx+(1+x/4)O2→CO2+x/2H2O;
Considering the high cost of both Pt and Pd, and to 

maximize the catalyst performance further, attempts 
for new catalytic materials that comprised of non-
noble metals had been tried, such as base metal oxides 
including Cr, Ni, Co, Cu and Mn etc. Unfortunately, all 
of them were unsuccessful at the early stage, which 
emphasized the essential importance of Pt and Pd[225]. 
However, decreasing or completely replacing precious 
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metals into alternative cheap metals still continued to be 
a goal of some recent researches. Another strategy was 
loading Pt-group metals onto materials with high specific 
surface areas to increase the number of active sites. 
γ-Al2O3, CeO2-ZrO2

[226,227] were the two main carriers 
used to disperse these active components (Pt, Pd, and 
later Rh). Heat treatment thermally fixed or anchored 
the active components to the carriers, resulting in a Pt-
group metal-support catalytic system available for the 
reactants to chemisorb and convert with high efficiency. 
Strong interactions between metal and support induced 
by these operations contributed to anchor metal 
particles with higher stability, which achieved long-term 
durability under high temperature operation conditions. 
For the industrial production, the active components 
were commonly supported on extruded ceramic 
monolithic structures (cordierite; 2MgO-5SiO2-2Al2O3), 
which helped to improve catalytic effectiveness. These 
kinds of coated monoliths were sufficient with pores for 
coating a thin layer, and the reactants diffused from the 
bulk gas to the catalytic wash coat through its porous 
network in search of the catalytic sites, where they 
were chemisorbed and converted to products with high 
efficiency. Due to the recent advanced SACs catalysts 
preparation methods, applying SACs to eliminate 
gaseous pollutants had also attracted much attention 
and came to be another strategy to improve atom 
utilization efficiency[228,229]. 

Since 1980, with the increasing need for eliminating 
NOx from vehicles or industrial emissions, new catalytic 
systems have been established to convert CO, CHx 
and NOx simultaneously in concert with engine control 
and fuel composition change. With the discovery that 
Rh exhibited good catalytic performance towards NOx 
conversion[230], the active components of TWCs were 
mainly comprised of Pd/Rh or Pt/Rh[231-233]. Especially, 
Pd/Rh catalysts dominated the scene in recent years, 
aided by the spreading of low-sulfur fuels and cheaper 
Pd prices compared to Pt. Figure 17 showed the typical 
performance of a TWC under different air-to-fuel feed 
ratios, which remarkably influenced the gas composition 
after burning[232]. The advantages or uniqueness of the 
TWC was that it could operate primarily at stoichiometric 
air-to-fuel ratios that were compatible with the oxidation 
of the three pollutants. It can be seen clearly in Figure 17  
that the operation window (in green column) for 
TWC to convert the pollutants at the same time was 
narrow. Therefore, an O2 sensor that could convert the 
partial pressure of O2 in the exhausted gases from the 
stoichiometric point (λ=1) into an electrical signal were 
required. Later, the generated voltage sent instructions 
to the electronic control computer, instructing the fuel 
supply system to increase or reduce the amount of 
fuel entering the engine in the feedback control loop. 
Based on this guideline, taking advantages of the 
reversible redox and oxygen storage capacities of CeO2-

ZrO2 mixture, adding them to TWC help to buffer the 
disturbance, and ultimately achieved conversion goal. 
When there was a deficiency of O2 (that is, λ<1), the 
surface of CeO2 or ZrO2 was reduced while suppling the 
oxygen to convert CO. The reduced surface of Ce2O3/
Zr2O3 was then oxidized back to CeO2/ZrO2 when the 
perturbation generated excess O2 (λ>1).

Exploring other types of catalysts that can selectively 
catalyze the reduction (SCR) of NOx into N2, which can 
reduce or even replace Rh contents, and later couple 
them with Pt or Pd catalysts to construct TWCs has 
also obtained much attentions. Liu et al.[234] reported 
a novel WO3-doped Fe2O3 catalyst that exhibited 
high NH3-SCR activity in a wide range of operating 
temperatures and high resistance against H2O and SO2. 
The highly dispersed WO3 acted as both ‘‘chemical” and 
‘‘structural” promoters, which led to the high surface 
area and more amounts of active sites. Similarly, V2O5-
WO3/TiO2 catalysts[235], WO3/CeZrO2 catalysts[236], Fe or 
Fe2O3-based catalysts[237,238], Co-based catalysts[239,240] 
etc. had been also proved to be highly effective. More 
importantly, Cu-based catalysts including Cu/SSZ-13 
that had already been commercially used[241,242]. Besides, 
Cu/SSZ-16[243], Cu/SSZ-39[244], modified Cu-SSZ-13@
SiO2 catalysts with a core-shell monolithic structure[245] 
and coupled CeZrOx-Cu/SSZ-13 catalysts[246] had been 
also proposed successfully. The above catalysts provided 
opportunities to achieve the conversion of NOx and 
vehicle emissions by non-noble metals.

The adjustments or modifications of CeO2/ZrO2 
based TWCs was an interesting and attractive strategies 
for converting these pollutants. On the one hand, 
modifications focused on the active metals brought out 
different catalytic performance. For example, alkali and 

Figure 17. Typical Performance of a Three-Way Catalyst 
(Pd and Rh Stabilized on Alumina Plus CeO₂-ZrO₂/
Ceramic Monolith) as a Function of Air-to-Fuel Ratio. 
Reproduced from Ref.[232] with permission from Springer.
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alkaline earth metals were widely used to adjust the 
electronic structure of supported catalysts[247,248] due 
to their relatively small electronegativity, which were 
crucial for binding with active metals through surface 
oxygen linkages[249]. Constructions of catalysts with 
ternary or even quaternary metals also shed light on the 
conversion of vehicle emissions[250]. On the other hand, 
the modifications on CeO2/ZrO2, such as controlling the 
morphologies[251,252], crystal phases[253] and exposed 
lattice planes[254,255] etc. contributed to adjust the 
redox and oxygen storage properties, and accordingly 
improved the catalytic performance. Development 
of new synthetic processes for highly active CeO2-
ZrO2 materials or even ternary oxide composites with 
high oxygen mobility was another vibrant research 
area[256,257].

 
In summary, the synthesis of three-way catalysts is 

the guide line for converting exhausted vehicle gases. At 
present, efforts have been continuously put to modify 
these catalysts with high catalytic performance but 
lower cost.

2.4 The Catalytic Conversion of 
Pollutants in Water

In the recent decades, the increasing serious water 
pollution from hazardous and toxic organic pollution 
agents is annoying worldwide. In the most prevalent 
examples of waste water, there are inorganic chemicals 
such as heavy metals, suspended solids, toxic organics 
and dyes, which are usually emanated from industrial 
sources[258]. By far, various techniques including 
chemical precipitation, adsorption, ion-exchange, 
membrane filtration and chemical catalytic conversion 
for remediation or purification of waste water samples 
have been reported. Here, we mainly pay attention to 
the chemical catalytic methods. As can be predicted, 
the complex compositions in waste water bring out high 
conversion difficulty, and multi-functional catalysts that 
can deal with different types of pollutants are the most 

ideal target. Indeed, it is difficult to achieve this goal 
as far as the technology that have been developed. 
At present, there are no efficient integrated methods 
that can deal with all types of pollutants in waste water 
simultaneously. The main strategy for converting waste 
water is transforming different kinds of pollutants 
stepwise. The essence for degrading different types 
of pollutants lies on the cleavage of different chemical 
bonds, such as COOH, -C-N, C=C, C-O, C-S, and N=N 
bonds, and halogen atoms. Therefore, the types of 
required catalysts with high catalytic performance 
differs, and the degradation paths of materials to 
different organic pollutants and heavy metals under 
different conditions are somewhat different.

Among the chemical catalytic methods, photocatalytic 
degradation dominated, which illustrated an effective 
and promising approach for the elimination and 
destruction of hazardous contaminants from waste 
water produced from industries. These photochemical 
degradation processes called “advanced oxidation 
processes” could completely degrade organic pollutants 
into harmless inorganic substances such as CO2 and 
H2O under moderate conditions. The fundamental 
mechanism of photocatalysis for the degradation of 
toxic pollutant was presented in Figure 18[259]. 

As for the photochemical materials, many effective 
photocatalysts had been developed well such as 
typical semi-conductor TiO2

[260,261], other metal oxides 
and their composites[262], graphene-based materials 
(especially g-C3N4)[263,264], magnetic-MXene-based 
materials[265], and MOFs[75,266] etc. MOFs had emerged 
as promising and new photocatalysts to convert water 
pollutants, since they possessed an outstanding pore 
structure, adsorption capacity, and photocatalytic 
properties. The corresponding working mechanisms 
for the photocatalytic degradation of organic pollutants 
driven by MOF-based photocatalysts had been clearly 
demonstrated elsewhere[75]. Combining some reviews, 
we divided these complex pollutants into five main 

Figure 18. Photocatalytic Degradation of Toxic Pollutants. Reproduced from Ref.[259] with permission from Elsevier.
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categories, that is, agrochemicals (including pesticides 
and herbicides), antibiotics, dyes, oil and grease, phenol 
and phenolic compounds and other pollutants. 

2.4.1 Degradation of Agrochemicals
Nowadays, an interesting issue “Agrochemicals are 

our friends or our enemy” is debating. On the one 
hand, it helps to save the crop loss to a great extent 
by controlling pests and removing weeds. On the 
other hand, the overuse of agrochemicals including 
both pesticides and herbicides can badly impact the 
environment and human health as they can cause 
cancer and other harmful diseases. A CoOx/BiVO4 
photocatalyst degraded propyl paraben (a typical 
herbicide) successfully, and the enhancement of the 
photocatalytic activity of the synthesized catalysts was 
described as the efficient electron-hole separation, 
achieving by the p-n junction formed between the 
p-type Co3O4 and the n-type BiVO4 semiconductors[267]. 
Unfortunately, this catalyst could only work in pure 
water system while the degradation was severely 
impeded in secondary treated waste water. Cao et al.[268] 
reported the efficient photocatalytic degradation of 
herbicide glyphosate (degradation rate reached 97%) 
by a magnetically separable and recyclable BiOBr/
Fe3O4 nanocomposites under visible light irradiation in 
waste water. Another study successfully synthesized a 
ternary composite photocatalysts g-C3N4/BiOI/Bi2MoO6 
via dispersion modification of BiOI and perovskite-like 
materials Bi2MoO6 on g-C3N4, which accomplished a high 
photodegradation rate of glyphosate (94%)[269]. Moreover, 
the degradation of another herbicide (paraquat) that 
used on large scale had been also conducted. Munshi et 
al.[270] reported that the high photodegradation activity 
of paraquat was obtained by using ZnO nano-catalyst, 
and the concentration of paraquat decreased from 
100ppm to 35ppm in 12h. Adding WO3 to ZnO to modify 
the photocatalytic performance, a higher degradation 
rate of paraquat was achieved compared to single ZnO 
and WO3

[271]. Moreover, the ZnO-WO3 composite was 
found to be stable for at least three cycles for reuse. 
Imidacloprid and profenofos etc., as typical pesticides, 
were widely used in agriculture field. The investigations 
on the conversion of these pesticides were also hot 
research topics. By using Ag3VO4/Ag2VO2PO4, an 
excellent degradation efficiency towards imidacloprid was 
achieved, as reported by Zhang et al[272]. The formation 
of Ag2VO2PO4/Ag3VO4 heterojunction suppressed the 
recombination of photoinduced charges and prolonged 
its lifetime. Therefore, enhanced catalytic performance 
was obtained. An optimized Bi2WO6/NH2‑MIL‑88B(Fe) 
composite derived MOFs materials was used to evaluate 
the degradation of imidacloprid under visible light, and 
about 84.5% of imidacloprid could be removed[273]. A 
hierarchical nanohybrid ZGO-MOF (comprised of zinc 
oxide, graphene oxide and MOFs) achieved excellent 
efficiency for converting profenofos[274]. Moreover, it 

showed excellent photo-stability over five repetitive runs 
for the removal of organic pesticides with minimal drop 
on catalytic activity, presenting a promising choice for 
applications in waste water management. 

2.4.2 Degradation of Antibiotics
Antibiotics are substances that inhibit the reproductive 

growth of microorganisms such as bacteria, viruses, 
and fungi etc., and eventually eliminate them. However, 
humans and animals cannot completely absorb them, 
resulting in their discharge in the water environment, 
which causes environmental pollution. Typical 
antibiotics, for example, ofloxacin, norfloxacin, and 
ciprofloxacin, were mainly degraded by defluorination, 
carbon-nitrogen bond breaking, decarboxylation, and 
ring opening[75].

Yong et al.[275] had summarized the recent 
advances in photodegradation of antibiotic residues 
in water, as illustrated in Figure 19. In this review, 
we mainly list some typical cases. Heterogeneous 
TiO2-based catalysts had been widely examined 
for the photocatalytic degradation of ciprofloxacin 
under UV/visible light irradiation, which exhibited 
good degradation capability[276]. A BiOBr/Mn-Ti3C2Tx 
composite photocatalyst synthesized through in-situ 
ion modification method accomplished the nearly 
total degradation of ciprofloxacin with the assistant of 
peroxymonosulfate activation. This improved activity 
was ascribed to the superior light capture ability[277]. 
Besides, a novel γ-Fe2O3-MIL-53(Fe)-GO composite was 
found to display high photocatalytic activity towards 
norfloxacin, with a removal rate of 92.8% in 90min[278]. 
Another MOF (ZIF-67) etching-induced Co-doped hollow 
carbon nitride catalyst was reported to be efficient 
to remove antibiotic tetracycline, for achieving 99% 
degradation[279]. 

2.4.3 Degradation of Dyes
Dyes play an important role in the production and 

life of human beings because they are widely used 
in various aspects of daily life. However, they also 
contribute to serious environmental problems even 
damages to human health once released into the 
environment[280,281]. Researches on degrading some 
typical dyes that were extensively utilized in the 
printing, textile, plastic, silk, food, leather, and textile 
industries, such as methylene blue (MB), methyl orange 
(MO), and rhodamine (Rh B) are presented here. 

Ramezanalizadeh et al.[258] used a facile synthesis 
route to prepare a novel MOF-based composite with 
CuWO4 noted as MOF/CuWO4 successfully, and this 
photocatalyst could remove about 98% MB under LED 
light irradiation. The characterizations revealed that 
the formation of junction between MOF and CuWO4 
effectively reduced the recombination of electron-hole 
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Figure 19. A Summary of Key Recent Advances in Photocatalytic Removal of Antibiotics in Water. Reproduced from 
Ref.[275] with permission from Elsevier.

pairs in the MOF/CuWO4 heterostructure. Furthermore, 
lower regeneration of electron-hole pairs in the MOF/
CuWO4 was responsible for the higher photocatalytic 
activity. Degradation of MB as well as MO had been also 
conducted by Nguyen et al.[282] by using Pd-doped TiO2 
photocatalysts that synthesized by sol-gel method. The 
degradation pathways of single MB and MO with this 
catalyst were also proposed. In addition, Kumar et al.[283] 
developed BiO-Ag(0)/C3N4@ZIF-67 for the degradation 
of MB and Congo red dyes, and the degradation rates 
of MB and Congo red dyes were 96.5% and 90%, 
respectively. A TiO2-based MOF (MIL-125-NH2) catalyst 
with decorations by introduction of both hierarchical pores 
and oxygen vacancies showed enhanced degradation 
rate of Rh B[284]. Hierarchical pores increased the active 
sites and oxygen vacancies increased the yield of active 
radicals, and therefore the synergistic effect of Ov and 
hierarchical pores was achieved, ultimately leading to 
a superior photocatalytic performance, which provided 
a new strategy to prepare modified catalysts for the 
treatment of waste water. Syed Shoaib and coworkers 
had also focused on the synthesis of advanced catalysts 
(SACs, MOFs-based catalysts etc.) and their applications 
for handling waste water. They synthesized tri-metallic 
layered double hydroxides (NiZnAl-LDH) nano-sheets 
with unique structure that comprised of continuous 
macrostructure skeleton with interconnected macropores, 
which showed excellent catalytic performance for the 

decontamination of Rh B and methyl orange[285]. Other 
types of catalysts including Chitosan/MnO2@MOF-801[286], 
ZIF-8@ZIF-67[287] were also prepared, which showed 
good performance towards the photocatalytic reduction 
or adsorption of Rh B.

2.4.4 Degradation of Oil and Grease
The oil and grease are not only used in cooking life 

daily, but also widely used as solvents and raw materials 
in the petroleum, petrochemical, pharmaceutical, and 
cosmetic industries[288]. Regardless of the domestic 
life effluent, industries effluent or oil spilling from the 
transportation on oceans, the negative effects such 
as disrupting the photosynthesis of aquatic plants and 
diminishing the amount of dissolved oxygen in the 
water bodies will be resulted, which further destroys 
the balance of ecosystem[289]. It is of great urgency to 
solve the problems of oil pollution of water worldwide. 
For the mechanism of photodegradation of oils: a 
whole list of redox reactions happened because of the 
electron and hole pairs migration to the photocatalyst 
surface when light irradiation was put[290]. Ultimately, 
oils and organic contaminants could be degraded into 
CO2 and H2O by reactive oxygen radicals. Saien and 
Shahrezaei[291] treated a real petroleum refinery waste 
water which contained a range of aliphatic and aromatic 
organic compounds by using nano-TiO2 particles as the 
photocatalyst under UV irradiation. It was reported that 
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a degradation efficiency of more than 78% of these oil 
and grease pollutants was achieved under the optimum 
operating conditions. This work was expected to fulfill 
the primary required data on application of nano-
photocatalyst particles for the treatment of petroleum 
refinery waste water. Later, Shivaraju et al.[292] fabricated 
a N-doped TiO2 photocatalytic catalysts with polyscale 
structural features to enhance the overall efficiency 
of oil and grease removal in waste water through sol-
gel technique. Activity results clearly indicated the 
considerable removal level of the oil and grease from 
waste water, which was up to 85-90%±2% under 
natural sunlight, presenting a versatile, economical, 
and environmentally friendly technique due to the ease 
of handling and recovery, utilization of natural and 
renewable sunlight. Regardless of the modifications 
on photocatalysts, coupling photocatalytic and Fenton 
oxidation for oily waste water treatment was also 
adapted. Mokhbi et al.[293] reported a catalytic system 
(TiO2/UV/Fe2+/H2O2 (photocatalysis-Fenton’s reagent)), 
which was able to deal with oily organic pollutants with 
high efficiency. Solution pH was found to be the key 
factor governing the photodegradation performance.

2.4.5 Degradation of Phenol and 
Phenolic Compounds

Phenol and phenolic compounds such as p/m/
o-nitrophenol, chlorophenols etc. are one type of volatile 
aromatic hydrocarbon with a white crystalline structure, 
which are highly soluble in water and widely utilized 
in the production of kinds of chemicals[294]. They are 
highly irritating to skin, eyes and mucous membrane 
of humans on acute inhalation or dermal exposure. 
Therefore, the residue of these phenol and phenolic 
compounds is annoying, and dealing with them is also 
essential. A novel p-LaFeO3/n-Ag3PO4 heterojunction 
photocatalyst for phenol degradation under visible light 
irradiation was reported by Yang et al.[295] and 95% of 
phenol was degraded. Compared with the individual 
Ag3PO4 and LaFeO3, the composite photocatalyst 
exhibited much higher photocatalytic performance 
and stability due to the promoted separation efficiency 
between photogenerated electron and hole pairs. 
Another photocatalyst (Bi2O3-Bi4V2O11) synthesized by 
a high-temperature calcination method was found to 
be effective for phenol degradation (40mg/L) under a 
visible light source (300W Xe lamp) for 30min[296]. The 
enhanced photocatalytic performance of Bi2O3-Bi4V2O11 

compared to pure Bi2O3 and Bi4V2O11 was ascribed 
to the synergistic effect between Bi2O3 and Bi4V2O11, 
high interface quality and one-dimensionally ordered 
nanostructure. By constructing Cu2O/TiO2

[297] and 
Ag3PO4/Bi2WO6

[298] heterojunctions, they were capable 
of degrading 95.8% and 98.5% of phenol, respectively. 
Complete photocatalytic degradation of phenol was 
achieved on Ag2O/g-C3N4 heterostructure, synthesized 
by a simple chemical precipitation method at room 

temperature[299]. Similarly, TiO2/g-C3N4
[300], synthesized 

by surface hybridization and dip-coating method was 
also able to degrade phenol completely in 1.5h under 
visible light illumination. Except the degradation of 
phenol, much works focusing on the conversion of 
phenol derivates had been reported. The photocatalytic 
property of Na2Ti6O13/TiO2 towards 2,4-dichlorophenol 
was evaluated, and it was found that the degradation 
rate reached 99.4%[301]. In addition, a trimetallic 
catalyst, FeCoCu-nitrogen-doped carbon (FeCoCu-
NC) with core-shell structure was capable of degrading 
trichlorophenol efficiently with peroxymonosulfate 
activation[302]. In another study, Lam et al.[303] found 
that 95% of resorcinol was degraded by Ag2O/ZnO in 
6h under visible light irradiation. Higher photocatalytic 
activity of Ag2O/ZnO than pure ZnO could be attributed 
to the high separation efficiency of the photogenerated 
electron-hole pairs based on the cooperative roles 
of Ag2O loading on ZnO nanorods. Recently, Zr6O8-
porphyrinic MOFs had been reported as promising 
catalysts for boosting photocatalytic degradation of 
bisphenol A in high salinity waste water with degradation 
rate for nearly 100%[304]. This catalytic system could 
maintain consistent contaminant degradation efficiency 
over a wide pH range, with high concentrations of co-
existing ions and in real water matrices, providing 
possibility for the treatment of highly saline waste water.

2.4.6 Degradation of Other Pollutants
In addition to the above-mentioned four categories 

of pollutants in waste water, various other pollutants 
are still presented in the waste water and atmospheric 
environment, such as heavy metal, pharmaceuticals, 
industrial compounds, volatile organic compounds 
(VOCs) and even bacteria. Reports for treating these 
contaminants had been also briefly presented. For 
example, both nanotubes and graphene-based 
photocatalysts had been proved to be effective towards 
the removal of heavy metals[305]. Besides, iron-based 
materials showed high removal performance towards 
heavy metals, reported by Zhang et al[306]. Cao et al.[307] 
used G-C3N4/ MIL-68(In)-NH2 to degrade ibuprofen (an 
anti-inflammatory and analgesic drug) under visible light. 
Fe-MOF derivative was successfully prepared by thermal 
treatment using MIL-100(Fe) as a precursor and the 
resulting M-300 catalyst displayed excellent performance 
in the degradation of VOCs and the bacteriostasis to 
Escherichia coli under visible light[308].

In summary, the photocatalytic degradation of all 
organic toxic pollutants was depending on their active 
groups, and the photocatalysts with high catalytic 
performance played vital roles on illuminating them. 
MOF-based materials that contained many active species 
were grabbing increased attentions on the degradation 
of waste water pollutants. However, as far as we know, 
there is no efficient catalytic system enables to catalyze 
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or degrade these different types of pollutants in waste 
water simultaneously. The above commented works 
primarily displayed excellent catalytic performance 
towards one certain compound, rather than for several 
or even all the pollutants in the waste water. These 
catalysts were designed and synthesized particularly 
towards one certain compound. Moreover, for the waste 
water that really emitted from factories, a large quantity 
of sediments was mixed, which brought out converting 
difficulties further. The above issues would motivate 
researchers to think about how to convert the waste 
water with high complexity.

Even though a great deal of progresses has been 
achieved in the catalytic conversion of these complex 
reactant systems, deeper investigations on mechanism 
are still highly presumed since it guides us to fulfill the 
conversion of complex reactant systems with much 
higher efficiency and lower costs that follows the way 
we want. At present, there is merely rare scientific 
researches disclosing the real reaction mechanisms 
occurred in the complex reactant systems, and it is 
still a huge task for us to finish. Detailed mechanism 
explorations require not only reasonable and ingenious 
design of experimental processes, but also theoretical 
calculations, which are key steps to help realize this goal. 
To date, the complicated compositions of these complex 
reactant systems restrict or even imped the theory 
construction of models, so that accurate calculation data 
related to the real complex reactant systems cannot be 
obtained. Further efforts devoting to solve this problem 
should be put. As for the concrete examples for the 
catalytic conversion of complex reactant systems that we 
enumerated before, it can be clearly seen that traditional 
catalysis methods are widely adopted while those 
advanced catalysis we mentioned in the introduction 
section have not been used widely in this field even 
though they own prosperous application prospectives and 
huge development potentials. Hence, we should think 
about how to utilize these recent developed advanced 
catalysis approaches to promote the conversion of 
complex reactant systems? How can the advantages 
of these newly developed advanced catalytic methods 
be fully exploited in this application area? Whether new 
strategies should be developed from different viewpoints? 
Once the above questions have been well settled, it can 
be anticipated that the conversion of complex reactant 
systems would step into a new broader stage. 

It should be noted that the poisoning phenomenon 
of traditional catalysts was obvious due to the complex 
compositions and high contents of toxic pollutants 
contained in these systems, not to say those advanced 
catalysts with precisely controlled active sites. Moreover, 
the interactions between components in a complex 
reactant system was highly complex, and the existence 
of other components might affect the conversion of a 

certain component, which might be positive or negative. 
Besides, the intercrossing or interactive effects of 
different reactions might also play an important role for 
such conversion. Therefore, new strategies that totally 
different from these presented or applied now should be 
cultivated since the majority of these methods currently 
developed are proposed based on the reaction systems 
that comprised of simple components rather than 
complicated ones.

3 CONCLUSIONS AND OUTLOOKS
In conclusion, there have been a lot of newly 

developed, advanced, and multivariate technologies 
related to catalysts emerging in recent decades. 
These technologies have been widely concerned with 
preparation, characterization and in-situ operation 
equipment. Based on both traditional and emerged 
technologies, and integrating with smart transformation 
strategies, the catalytic transformation or degradation 
of these complex reactant systems have also gained 
achievements. Researchers have fulfilled the conversion 
of biomass including lignocellulos and chitin into value-
added chemicals, the recycle and re-utilization of 
waste-plastics accompanying solving white-pollution 
issues and the purification of both vehicle exhausted 
gases and water pollutants to less-toxic even non-toxic 
chemicals. All of these efforts contribute to build a more 
sustainable and greener Earth to live. However, due to 
the particularity of these complex reactant systems (not 
only limited to these we mentioned above), that is, the 
high complexity of their compositions, chemical-bonding 
and interactions, there is still huge development space 
and potential for their catalytic transformation, leaving 
researchers with a long way to explore. Based on 
this, we propose the following possible development 
strategies in the future to promote the catalytic 
transformation of complex reactant systems.

Firstly, take full advantages of “Artificial Intelligence” 
(AI) such as machine learning (ML) and deep learning 
(DL) that constructed and guided by huge database 
and naturally enables multi-task learning. AI has 
received widespread attention over the last few 
decades due to its potential to increase automation 
and accelerate productivity. The traditional trial-and-
error method is inefficient and time-consuming to solve 
problems or synthesize new materials or chemicals. 
On the one hand, the development of new conversion 
methodologies towards both basic reactions or systems 
with complex networks is a tedious task demanding 
both time and resources. On the other hand, the 
vast amounts of chemical data generated during lab 
experiments are usually underutilized, which is indeed 
highly important for guiding further researches[309]. 
Therefore, the application of data-driven approaches 
for reaction discovery, optimization, and prediction can 
make a significant impact on efficient exploration of 
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these complex reactant systems in multidimensional 
chemical spaces. Recently, the improvements in 
computing power that complemented by improved data 
availability have led to notable progresses in the use of 
ML and DL in many areas of chemistry, including the 
design and architecting of pharmaceuticals and other 
molecules[310,311], the discovery of novel multifunctional 
materials[312], the exploration and predication of kinetic 
pathways[313], the discovery of highly efficient catalysts 
and the understanding of the real reaction mechanisms 
etc[314]. Here, we primarily emphasize the goals and 
achievements using ML and DL on catalysis. By using ML 
and DL as tools, a deeper understanding of the relations 
between materials properties and activity, selectivity and 
stability, which are important merits of catalysts, can 
be established. Based on these insights, catalyst design 
principles can be established further, which hopefully 
guides us to discover highly efficient catalysts to solve 
pressing issues (such as the catalytic conversion of 
these complex reactant systems) to build a sustainable 
future and synthesis world[315-318]. In this research 
field, developing suitable and reliable machine learning 
models of ML or DL for designing and discovering 
superior catalysts in many aspects with relatively small 
and sparse labeled data, is also an important pursuit. 
To date, efforts have been devoted to these research 
fields, and some preliminary and fundamental results 
have been achieved. Cheng et al.[319] had summarized 
the works that focused on the design of SACs driven by 
AI, and the diagram of operation mechanism was shown 
in Figure 20. Firstly, an integrated design-synthesis-
analysis approach could be established with the 
development of databases driven by AI, which helped 
to bridge the experimental science and computer-based 
models, and more and more parameters and effects 
involved in catalytic processes could be clarified, such 
as atomic confinement, local coordination, adsorption 
energy and kinetic and thermodynamic parameters 
etc. Secondly, AI could drive high throughput 
screening through various function-sensitive data-
based descriptors of SACs towards structure-property 
relationship. Meanwhile, the theoretical calculations 
could be also promoted by AI since multi-parameters-
involved as input descriptors during the calculation had 
been used to reveal the structure-activity relationships. 
These multiple-level descriptors obtained by machine 
learning were more reliable, which made the prediction 
of chemical reactions more accurate. As reported by 
Ramirez et al.[320], AI was also capable of accelerating 
exploration of heterogeneous CO2 hydrogenation 
catalysts by Bayesian-optimized high-throughput and 
automated experimentation. 

In addition to its positive impacts on catalyst design, 
AI is also important for clarifying the mechanism 
of catalytic reactions, where dynamic analysis is 
the core, which helps to directly test mechanism 

hypotheses from experimental data. Traditionally, 
kinetic analysis had relied on the use of methods 
such as initial rate, logarithmic graphs, and visual 
kinetic dynamics, combined with mathematical rate 
law derivations. However, the derivation of rate laws 
and their interpretation required many mathematical 
approximations, and as a result, they were prone to 
artificial errors and were limited to reaction networks 
with only a few steps at steady state. Burés and 
Larrosa[321] reported a deep neural network model 
could be trained to analyze ordinary kinetic data and 
automatically elucidated the corresponding mechanism 
class, without any additional user input. The model 
identified a wide variety of classes of mechanism with 
outstanding accuracy, including mechanisms out of 
steady states such as those involving catalyst activation 
and deactivation steps, and performed excellently even 
when the kinetic data contained substantial errors or 
only a few time points, which would lead to further 
advances in the development of fully automated 
organic reaction discovery and development. However, 
we should also realize even though AI is prospective, 
there are still some demerits needs to be considered. 
The required amounts of data in the database must be 
large enough, and the authenticity of the data must 
also be guaranteed. At the same time, the learning 
model adopted by AI must also be intelligent enough or 
suitable for complex reactant systems. Only when these 
two conditions are met simultaneously, the data filtered 
or simulated based on AI is effective. However, there 
are still tough ways to go to satisfy these two conditions.

Another pivotal approach is to shift our historic 
dependence on manual works to smart machines, that 
is, the recently hot “A mobile robotic chemist”[322,323]. 
Undoubtably, chemists spend a great deal of time 
tweaking the conditions of known reactions. Small 
changes to temperature, pressure, substrate 
concentration and catalyst amounts etc. have significant 
influences over product yields and selectivity in simple 
systems, not to say the complex reaction systems 
without well-developed methodologies. In this way, 
robots can assist in pre-experimental searches and 
materials researches, which have already applied in 
some simple synthesis process[324-327]. For example, 
very recently, Burger et al.[322] used a mobile robot 
to search for improved photocatalysts for hydrogen 
production from water, wherein the robot could operate 
autonomously over eight days, performing 688 
experiments within a ten-variable experimental space, 
driven by a batched Bayesian search algorithm. This 
autonomous search identified photocatalyst mixtures that 
were six times more active than the initial formulations, 
selecting beneficial components and deselecting ones. 
This strategy used a dexterous free-roaming robot, 
automating with higher working-efficiency than human 
operation, which provided a new option for chemists 
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Figure 20. The Proposed Diagram for AI-Driven Single-Atom Heterogeneous Catalysts Design and Discovery.
Reproduced from Ref.[319] with permission from Wiley.

to work with. Likewise, the similar robots or even with 
more sensitivity, flexibility and intelligence ability could 
promote the exploration and catalytic degradation of 
these complex reactant systems. Another prospect 
proposed here is an integration of AI and automatic robot 
workers towards autonomous discovery of highly efficient 
catalysts and subsequently reactions conduction, which 
will emerge within next decades, and provide a vision for 
converting complex reactant systems to desired products 
with higher yields as well as selectivity under much 
milder and greener conditions. Absolutely, the approach 
requires the integration of the following tools, which 
have already seen substantial development to date: 

high-throughput virtual screening, automated synthesis 
planning, automated laboratories, and machine learning 
algorithms etc., and each of them is indispensable. In 
spite of shortening the time to cultivate new catalyst 
materials by an order of magnitude, this integrated 
approach is also expected to lower the cost associated 
with the manpower resources, time costs and conditions 
optimizations etc. Consequently, the price of the final 
products as well as waste treatments will also decrease. 
This in turn will enable industries and governments to 
pay more attentions in terms of reducing toxic emissions, 
greenhouse gases emissions and white pollutants. In 
summary, bringing recent technological innovations in AI, 
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automatic robotics and computer science together with 
current approaches in chemistry, catalysts synthesis and 
characterization will act as a catalyst for revolutionizing 
traditional research and development in both industry 
and academia[328]. However, we should realize that the 
research and building of smart robots are somehow 
difficult because they require the joint efforts of multiple 
disciplines including computer science, mechanical 
engineering, electronic engineering and control science 
etc., which brings a lot of uncertainties for the use of 
intelligent robots to transform complex reactant systems.

Thirdly, more efforts in both theoretical and practical 
levels should be contributed to implement the ‘precision 
chemistry’ concept. Developing more efficient and 
accurate theoretical methods and programs for 
theoretical calculations is essential. At present, various 
approximations are usually introduced in the actual 
calculations because the workload and difficulty of 
computation required augment exponentially with the 
increase of the sizes and amounts of molecules. These 
approximations bring errors in some extents because 
the complex reactant systems can not represent the 
real ones. Therefore, it is necessary to develop new 
methods to obtain the most accurate computational 
simulation results under the conditions of tolerable 
computational resources. It can be predicted that 
the emergence of quantum computers is anticipated 
to bring breakthrough progresses in this direction. 
Quantum computer can greatly improve the efficiency 
of electronic structure calculations. The other aspect 
is to develop accurate characterization methods for 
catalysts under real working conditions. To obtain 
experimentally accurate chemical details at the atomic 
scale, conditions of ultra-low temperature and ultra-
high vacuum are usually required. However, the real 
chemical processes usually occur at normal temperature 
and pressure or even high temperature and pressure. 
Moreover, as for the treatments towards complex 
reactant systems, it is more intricated. To address 
these challenges, it will be necessary to gain a better 
understanding of the detailed reaction mechanism and 
reaction intermediates. It is a vital goal of precision 
chemistry to develop new characterization methods and 
obtain as much data as possible about the structures, 
properties and dynamic behaviors of the systems under 
working conditions, which will promote the establishing 
of structure-reactivity relationships and in turn guide the 
design of catalysts. In addition to this, the knowledge 
in precision chemistry will also provide insights into 
the deactivation phenomena that occurs during the 
conversion of these complex reactant systems. By 
unraveling the intricacies of the reaction mechanism 
and identifying key intermediates, researchers can 
develop strategies to mitigate catalyst deactivation 
and enhance catalyst stability, leading to more 
efficient and sustainable catalytic processes. Similarly, 
more precise identification of kinds of intermediates 

contributes to establish precision chemistry. In fact, 
there are still some obstacles for implementing the 
‘precision chemistry’ concept in both theory and 
practical aspects. On the one hand, the development of 
precision chemistry theoretically needs the promotion 
of theoretical innovation. Also, when macromolecules 
are used to conduct the theoretical calculations to 
practice the concept of precise chemistry, not only will 
the calculation time be extended geometrically, the 
efficiency of the calculation will be reduced accordingly, 
but also the cost will be greatly increased.

Lastly, a newly conversion concept should be 
established. As for these complex reactant systems, 
researchers are widely adopting fractionation or 
categorized conversion strategies nowadays. An 
innovation concept that ‘Full components utilization 
and conversion’ could be a promising strategy, which 
exploits the full potential of all components in these 
complex reactant systems Besides, new strategies 
from different viewpoints, specifically for converting 
complex reactant systems, should be cultivated since 
these already developed methods are aiming for those 
systems with simple compositions, which is not suitable 
for the conversion of complex reactant systems. 
However, the time for developing new strategies from 
different viewpoints specifically suitable for converting 
complex reactant systems is unclear, which makes the 
process unpredictable.
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Abbreviation List
3A5AF, 3-acetamido-5-acetylfuran
5-HMF, 5-hydromethylfurfural
AI, Artificial intelligence
CCD, Coordination-coupled deprotonation
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DL, Deep learning
DMSO, Dimethyl sulfoxide
EG, Ethylene glycol
FA, Formic acid
FAL, Furfural
GlcNA, Glucosaminic acid
GVL, γ-valerolactone
LA, Levulinic acid
LMWC, Low-molecular-weight chitosan
MB, Methylene blue
ML, Machine learning
MO, Methyl orange
MOFs, Metal-organic frameworks
NAG, N-acetyl glucosamine
PC, Polycarbonate
PET, Polyethylene terephthalate
PLA, Polylactic acid
PS, Polystyrene
PU, Polyurethane
PX, Para-xylene
Rh B, Rhodamine
SACs, Single-atom catalysts
SCR, Selectively catalyze the reduction
TEOS, Tetraethyl orthosilicate
THF, Tetrahydrofuran cyclohexane
TWCs, Three-way catalysts
VOCs, Volatile organic compounds
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