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Abstract
The development of exceptionally efficient catalysts for the oxygen evolution 
reaction (OER) and gaining a deep understanding of their activity is essential for 
advancing electrochemical conversion technologies. Prussian blue analogues 
(PBAs) serve as promising pre-catalysts for the OER. However, PBAs, 
typically prepared through the conventional co-precipitation method, exhibit a 
lower active site density and limited electrical transport, making them suitable 
precursors for the derivation of PBA derivatives. In this research, we identified a 
significant enhancement in the electrocatalytic performance of Co-Fe Prussian 
blue analogue (CoFe PBA) through electrochemical oxidation. The cubic CoFe 
PBA was synthesized by one-step co-precipitation method using adjusting the 
amount of sodium citrate and potassium ferricyanide. After the electrochemical 
treatment, CoFe PBA demonstrates remarkable attributes, including a low 
overpotential of 331mV at a current density of 10mA·cm-2, a small Tafel slope of 
50.4mV·dec-1, and excellent long-term stability during electrolysis in a 1M KOH 
alkaline medium for over 37h. Moreover, the electrochemical oxidation of CoFe 
PBA was comprehensive, employing techniques such as Transmission electron 
microscope, Powder X-ray diffraction, and X-ray photoelectron spectroscopy. 
These analyses confirmed the presence of real active substances, including 
CoOOH and a part of FeOOH species, further supporting the observed 
improvements in electrocatalytic activity.
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1 INTRODUCTION
In recent years, the field of hydrogen energy has 

experienced an unprecedented surge in growth, driven 
by the increasing adoption of clean energy and the 
advancing maturity of hydrogen energy technology[1]. 
One prominent avenue within this field is the production 
of hydrogen through water electrolysis. This method is 
firmly established and characterized by a straightforward 
procedure, environmental friendliness, and the 
generation of high-purity gas[2]. The water electrolysis 

revolves around two pivotal processes: the oxygen 
evolution reaction (OER) and the hydrogen evolution 
reaction (HER)[3]. In addition, the OER process is a 
sluggish reaction kinetics compared to HER due to the 
four-electron reaction[4]. To enhance the efficiency and 
catalytic performance of water-splitting, researchers 
often introduce electrocatalysts based on materials such 
as IrO2/RuO2 and Pt/C into the reaction process[5,6]. These 
catalysts serve to lower the energy barrier associated 
with these reactions, thereby improving their overall 
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effectiveness[7,8]. Nonetheless, precious metals present 
certain drawbacks, including limited reserves and 
high costs, rendering them less than ideal for catalyst 
applications. Consequently, the use of non-precious metal 
catalysts as a viable alternative to precious metals has 
been the most common strategy for water electrolysis in 
these hydrogen production technologies[9-11].

Prussian blue analogs (PBAs) are comprised of metal 
ions core linked by organic cyanide molecules. They 
offer several advantages, including cost-effectiveness, 
ease of synthesis, an open structural framework, and 
the ability to tailor their composition[12]. In addition, 
PBAs and their derivatives show promise as catalysts 
for OER. They offer advantages such as affordability, 
a straightforward synthesis, scalability, and the ability 
to tailor the metal species used in the catalyst[13]. In 
recent years, substantial efforts have been dedicated 
to enhancing the electrical conductivity and catalytic 
activity of Co-Fe Prussian blue analogue (CoFe PBA) 
by introducing dopants and conductive carriers. 
For instance, Lu et al.[14] devised a straightforward 
solvothermal method to design nano-cubes of Co3+-
enriched CoFe Prussian blue analogs, coated with 
precisely controlled MoS2 shell heterostructures, to serve 
as efficient OER electrocatalysts. Zeng et al.[15] have 
reported a novel approach in which they introduce a 
low Pt species content to augment the electrocatalytic 
activity of CoFe PBA. This enhancement is achieved 
through a sequence involving ammonia etching followed 
by calcination. García et al.[16] synthesized the Cobalt 
hexacyanoferrate supported on Sb-doped SnO2, which 
exhibited excellent electrochemical activity with a current 
density of 50-100mA·cm-2 at a 2V cell voltage. Zhao 
et al.[17] successfully synthesized nanosheets of Mo-
doped CoFe layered double hydroxides (Mo-doped CoFe 
LDH/NF) through an electrochemical transformation 
process. This process involved the conversion of Mo-
doped CoFe Prussian blue nanocubes situated on a 
nickel foam substrate (Mo-doped CoFe PBA/NF)[17]. The 
resulting material demonstrates exceptional efficiency 
in facilitating overall water-splitting. In some articles, 
it is assumed that PBA materials have a well-defined 
chemical structure and readily accessible active sites 
under electrochemical conditions. An exceptional catalytic 
performance is observed in tests, and performance 
is further enhanced through complex preparation 
processes such as ion doping and microstructure design. 
Nonetheless, unlike the extensive research focused on 
doping CoFe PBA, there have been very few confirmed 
reports regarding the direct utilization of CoFe PBA 
as electrocatalysts. Herein, we raise the question of 
whether a different reaction mechanism exists. In this 
regard, relative to oxides and (oxy) hydroxides, in situ 
studies on these systems are rare.

In this paper, we propose a straightforward and 

effective method to enhance the electrocatalytic 
activity of CoFe PBA. This method involves the direct 
in situ oxidation of CoFe PBA to create metal–(oxygen) 
hydroxide species on PBA’s surface while coordinating 
the unsaturated metal centers. CoFe PBA exhibited 
remarkable improvements through electrochemical 
modification, requiring only a minimal overpotential 
of 331mV to achieve a geometric current density of 
10mA·cm-2. The Tafel slope was significantly reduced 
to 50.4mV·dec-1, surpassing the catalytic performance 
of the original CoFe PBA. Furthermore, this enhanced 
performance was sustained over a continuous 37h 
operation, highlighting the exceptional durability of 
the electrochemically modified CoFe PBA. In addition, 
after the electrochemical treatment, CoFe PBA was 
reconstructed to CoOOH and FeOOH species which are 
real active site for OER. 

2 EXPERIMENTAL METHODS
2.1 Preparation

The synthesis process began by measuring 6mmol 
of Co (NO3)2 and 12mmol of sodium citrate, which were 
placed into a centrifuge tube. Subsequently, 80mL of 
deionized water was added to create what we will refer 
to as “solution A.” In parallel, 5mmol of K3Fe(CN)6 was 
measured and placed into another centrifuge tube. 
To this, 80mL of deionized water was added, creating 
“solution B.” Next, solution B was carefully poured 
into solution A, and the two solutions were thoroughly 
mixed and stirred for a duration of 30min. Following 
this mixing step, the resulting mixture was allowed to 
stand undisturbed for a period of 24h. Then, the mixture 
was subjected to centrifugation. Finally, the centrifuged 
material was freeze-dried, resulting in the formation of a 
solid CoFe PBA powder; the Fe-PBA was obtained using 
the same method. 

A total of 0.6g of CoCl2·6H2O (Aladdin, 98%) was 
introduced to the aforementioned solution and vigorously 
stirred for 15min at 10℃. Subsequently, NH3·H2O 
(Aladdin, 28-30%) was added until the solution reached 
a pH of 9. Following three hours of stirring, the resulting 
Co(OH)2 precipitate was isolated via centrifugation 
at 10,000rpm, followed by a thorough washing with 
deionized water and ethanol.

2.2 Characterization
Powder X-ray diffraction (XRD) patterns (Cu Kɑ,  

λ=1.5406A) were measured with a BRUKER D8 
ADVANCE. The chemical states of the elements 
in the prepared products were obtained by X-ray 
photoelectron spectroscopy (XPS, ESCALAB). 
Transmission electron microscope (TEM) (JEM-2100F) 
and scanning electron microscope (SEM) (SU8010) 
were used to examine the morphology and size of the 
CoFe PBA nanocubes. 
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2.3 Electrochemical Measurements
The activity evaluation tests for OER were performed 

in saturated potassium hydroxide electrolytes, 
respectively. A three-electrode system was adopted 
for this experiment, with a carbon rod electrode as 
the counter electrode, a Hg/Hg2Cl2 electrode as the 
reference electrode, and a carbon paper with the 
catalyst as the working electrode. A homogeneous 
ink was prepared by subjecting 4mg of the catalyst 
powder to ultrasonication in 1mL of deionized water 
for no less than 30min. Subsequently, the resulting 
ink was coated onto a carbon fiber paper (CFP) and 
allowed to air-dry for 1h, achieving a loading density of 
0.28mg·cm-2. Then, 0.1 wt % of Nafion (Sigma-Aldrich) 
was applied to the CFP surface to immobilize the 
catalyst. All electrodes were connected in a computer-
controlled electrochemical workstation (chi660e), and 
then all data were moderated and detected by the 
computer. The cyclic activation was run at a scan rate 
of 100mV·s−1 in the potential range of from 1.068 to 
2.068V vs. RHE. Linear scanning voltammogram (LSV) 
scans were maintained at a constant rate of 5mV·s-

1. Cyclic durability was checked by timing the ampere 
response. Electrochemical impedance spectroscopy 
(EIS) tests were performed at an applied potential of 
10mA·cm-2 within a frequency range of from 100kHz 
to 0.1Hz.

3 RESULTS AND DISCUSSION 
The preparation process for CoFe PBA composites 

is illustrated in Figure 1 Initially, solution A was 
created by combining Co(NO3)2 and sodium citrate. 
Concurrently, solution B was prepared by dissolving 
K3Fe(CN)6. Subsequently, solution B was introduced to 
solution A, followed by a thorough mixing and stirring 
for a duration of 30min. The resulting mixture was 
then allowed to sit undisturbed for 24h to ensure a 
complete reaction. During this reaction period, the 
cobalt ions from Co(NO3)2 replaced the potassium 
ions in K3Fe(CN)6, forming bridging connections with 
cyanide ligands and Fe3+ ions, ultimately leading to 
the formation of the Co2+-CN-Fe3+ structure[18]. The 
synthesized CoFe PBA composites exhibit a nanocube 
structure characterized with dark purple color. The 
subsequent cyclic activation process induced changes 
in the morphology and composition of PBA, enhancing 
the presence of active site[19]. As a result, these 
composites exhibit robust catalytic activity.

SEM images of the CoFe PBA composites were 
obtained, which clearly illustrate their cubic structure, 
and the side length is 100-250nm as depicted in  
Figure 2A. To further affirm the successful preparation 
of CoFe PBA, we conducted a crystal characterization of 
the synthesized catalysts using XRD. Figure 2B displays 

Figure 1. The Schematic Diagram of Preparation of CoFe PBA.

Figure 2. Image of CoFe PBA. A: SEM image of CoFe PBA. B: XRD pattern of CoFe PBA.
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Figure 3. CoFe PBA’s OER Activity. A: LSV curves of CoFe PBA at the different CV cycling curves; B: the corresponding Tafel slopes; C: EIS 
curves, D: Cdl curves of CoFe PBA.

four prominent peaks corresponding to the (111), 
(200), (220), and (400) crystal planes of CoFe PBA. The 
diffraction patterns observed in CoFe PBA align closely 
with the known structural properties of CoFe PBA, 
thereby confirming the successful synthesis of cubic 
structures of CoFe PBA.

Following the electrochemical treatment through 
cyclic voltammetry (CV) cycles, the electrocatalytic 
OER activity of CoFe PBA in a 1M KOH solution was 
obtained. To provide a comprehensive understanding 
of CoFe PBA’s OER activity after activation, the 
electrochemical properties of CoFe PBA cycled for 500, 
20,500, 21,500 and 22,000 cycles were determined. 
LSV curves (Figure 3A) revealed that the initial catalyst 
exhibited poor OER activity, with an initial overpotential 
reaching as high as 391mV. However, as CV cycling 
continued, the overpotential progressively decreased. 
Notably, the sample cycled for 21,000 cycles displayed 
a significantly lower overpotential of 331mV at a current 
density of 10mA·cm-2 which was lower compared to 
the uncycled CoFe PBA (391mV), CoFe PBA cycled 
for 500 (350mV), and CoFe PBA cycled for 20,500 
(337mV) electrocatalysts. Moreover, from Figure 3A, it 
can be seen that the overpotential exhibited a gradual 
reduction with an increasing number of cycles and 
there is no significant change after cycling up to 22,000 
cycles. The electrocatalysts’ OER kinetics were further 
evaluated through Tafel plots obtained by linearly fitting 

the polarization curves (Figure 3B). The Tafel slope 
for the sample cycled 21,000 cycles was the smallest 
(50.4mV·dec−1), indicating a significant enhancement 
in CoFe PBA’s activity following electrochemical cycling 
treatment. Moreover, the effect of cycling on the electron 
transfer capacity of CoFe PBA was investigated using 
EIS. The EIS data (Figure 3C) demonstrated that cycle-
activated CoFe PBA exhibited a lower charge transfer 
resistance (Rct) compared to the pristine CoFe PBA 
(uncycled CoFe PBA > CoFe PBA cycled for 500 cycles > 
CoFe PBA cycled for 20,500 cycles > CoFe PBA cycled for 
21,000 cycles), indicating that the surface reconstructed 
products have better electrical conductivity. Furthermore, 
the double-layer capacitance (Cdl), positively correlated 
with the electrochemical surface area[20], was extracted 
from the CV curves at different scan rates (Figure 3D).  
The Cdl values increased in the following order: 
uncirculated CoFe PBA (11mF·cm-2) < cycled 500 cycles 
of CoFe PBA (15mF·cm-2) < cycled 20,500 cycles of 
CoFe PBA (18mF·cm-2) < cycled 21,000 cycles of CoFe 
PBA (19mF·cm-2), implying an increase in the number of 
active sites. In summary, these electrochemical results 
underscore the pivotal role of surface reconstructed 
in enhancing CoFe PBA’s OER performance during the 
activation process.

To investigate the specific changes in the material’s 
structure before and after cyclic activation, an SEM 
was used to detect the morphology of catalysts.  

https://doi.org/10.53964/id.2024005
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Figure 4A and 4B vividly illustrate the significant 
structural transformation in CoFe PBA[21]. After CV 
cycling for 21,000 cycles, irregular materials proliferated 
on the surface of the original solid nanocubes, signifying 
a substantial alteration in the material’s structure[22]. 
Additionally, a comparative analysis of the energy-
dispersive spectrometer (EDS) results for CoFe 
PBA catalysts before and after cyclic activation was 
conducted. In Figure 4C, through EDS analysis, it is 
evident that, after CV 21,000 cycles of testing, the 
oxygen content increased dramatically, reaching 7 times 
that of the material before cycling, while the nitrogen 
content saw a significant loss, down to just 1/17 of its 
initial value. This observation indicates that, during the 
cycling process, the CoFe PBA underwent an oxidation 
reaction[23,24]. Notably, after this reaction, the cobalt 
content doubled compared to its initial state, while the 
iron content decreased to roughly half of its initial value, 
suggesting a loss of iron during the in situ reaction. 
Considering the previously measured performance, it can 
be inferred that, following 21,000 cycles, the primary 
active material may be CoOOH[4,19], which aligns with 
findings in a prior JACS article that discussed NiFe PBA, 
where nickel served as the active material and Fe ions 
were lost during the OER process[19]. More interestingly, 
a porous morphology is observed after the reaction 
due to the reconstructed structure and the loss of Fe 
and N. In addition, from the EDS maps in Figure 4D  
and 4E, it is evident that, initially, the distribution of 
N is relatively uniform across the material, while the 
distribution of oxygen (O) is sparse. This suggests 
that the initial state of the material experiences partial 

oxidation on the surface. After cycling, the map for 
cobalt ions (Co) becomes distinct, indicating the 
dominance of Co elements over Fe elements at this 
stage. Simultaneously, there is virtually no trace of 
nitrogen (N), signifying a significant loss of N. Oxygen 
(O) is clearly visible, predominantly on the material’s 
surface, indicating that a significant portion of the 
material transformed into oxides or hydroxides[25,26].

To scrutinize the microstructure of the activated 
catalysts and ascertain their specific compositions, 
CoFe PBA before cycling, after 500 cycles, and 
after 21,000 cycles was analyzed and characterized 
using TEM. As depicted in Figure 5A-C, the catalyst 
maintains a cubic structure before cycling; upon 
closer examination, no lattice structures are observed 
on its surface. This suggests that the catalyst at 
this stage retains the original cubic structure of 
CoFe PBA[27]. Figure 5D illustrates that even after 
500 cycles, the overall structure of the catalyst 
maintains its cubic shape. However, Figure 5E 
clearly shows that the surface of the cube is no 
longer as smooth as that of the uncycled catalyst[28]. 
Moreover, visible lattice structures start to emerge 
on the cube’s surface after 500 cycles (Figure 5F)[29].  
Furthermore, Figure 5G indicates that the catalyst, after 
21,000 cycles, undergoes a significant transformation, 
losing its cubic structure entirely. Instead, an irregular 
thin lamellar structure grows on the cube’s surface 
(Figure 5H), and the three-dimensional structure 
provides and a large surface area[30]. The measured 
lattice distances of 0.247nm and 0.330nm align 

Figure 4. Morphology changes of CoFe PBA. A: SEM image of the initial CoFe PBA; B: SEM image of CoFe PBA after 21000 
cycles for OER; C: EDS of before and after CoFe PBA cycles. The inset shows the atomic percentage of the element; D: EDS 
images for the after CoFe PBA cycle; E: EDS images for the initial CoFe PBA. Bar=1μm (Color in elemental mapping images: 
red for Co; green for Fe; purple for N; blue for O; yellow for C.)
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Figure 5. The Microstructure changes of CoFe PBA after 500 Cycles, and after 21,000 Cycles. A-C: TEM patterns of 
initial CoFe PBA; D-E: TEM patterns of cycled 500 cycles; G-I: TEM patterns of cycled 21,000 cycles.
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Figure 6. XRD Patterns of the before and after CoFe 
PBA Cycle. “Before” represents the results of the catalyst 
before undergoing cyclic testing, and “after” signifies the re-
sults after CV 21,000 cycles of testing.
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with those previously reported for CoOOH[31,32] and 
FeOOH[33]. respectively (Figure 5I). Based on the 
results above, cyclic activation may lead to the 
formation of CoOOH and FeOOH.

To pinpoint the specific products resulting from 
the remodeling of CoFe PBA after cycling, XRD 
characterizations of CoFe PBA without cycling and 
following 21,000 cycles of activation were obtained, 
respectively. It is important to note that, during our 
sample preparation process, the solution was air-dried 

by depositing it onto carbon paper, followed by the 
application of a protective Nafion solution and another 
round of air-drying. Then, the activation cycling was 
carried out, and the cyclic material was characterized 
using XRD on the carbon paper. The XRD analysis can 
exhibit numerous heterogeneous peaks attributed to 
carbon and Nafion. After eliminating the carbon peaks, 
it becomes evident that certain new peaks emerge 
following the cycling process (Figure 6). These peaks are 
quite consistent with the previously reported diffraction 
peaks of CoOOH[31] and FeOOH[34,35], indicating the 
presence of CoOOH and FeOOH in this catalyst, which 
is in agreement with the previous TEM observations. 
Such a phenomenon suggests that CoFe PBA can be 
activated by oxygen evolution reaction to form the 
metal hydroxide catalysts CoOOH and FeOOH.

To gain further insight into the specific products 
of CoFe PBA following OER activation, XPS was 
employed, as illustrated in Figure 7. The XPS spectra 
revealed that the CoFe PBA primarily consisted of 
the elements Co, Fe, C, N, and O, with no presence 
of other impurities (Figure 7A). In Figure 7B, the 
two primary XPS peaks at 782.6eV (Co 2p3/2) and 
797.9eV (Co 2p1/2) of CoFe PBA without cyclic 
activation are attributed to Co2+[36,37] and the peaks 
at 781.4eV and 796.6eV are ascribed to Co3+[38]. In 
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Figure 7. Products of CoFe PBA following OER Activation. A: XPS spectra of survey spectrum; B: Co 2p; C: Fe 2p, and D: 
O 1s for before and after CoFe PBA cycle. Where “before” represents the results of the catalyst before undergoing cyclic test-
ing, and “after” signifies the results after CV 21,000 cycles of testing.
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comparison to the original sample, after cycling, the 
XPS peaks became sharper and more pronounced. 
The Co 2p show a negative shift suggesting the 
formation of CoOOH substances[39]. In the XPS 
analysis of iron (Fe) (Figure 7C), the presence of 
three peaks at 713.5 and 724.2eV corresponds to 
the characteristic peaks of Fe 2p1/2 and Fe 2p3/2, in 
accordance with reported literature on FeOOH[40,41]. 
In Figure 7D, the intensification of the oxygen 
(O) peak directly implies the presence of oxide 
substances, accompanied by the appearance of M-O 
bonds, signifying the generation of either CoOOH or 
FeOOH[42]. Based on these results, it is shown that 
cyclic activation can lead to the remodeling of the 
CoFe PBA surface. 

Figure 8A and 8B illustrate the polarization curves 
and Tafel slopes of CoFe PBA, Fe-PBA, Co(OH)2, 
and Pt/C. CoFe PBA after activation exhibits an 
excellent OER performance, demonstrated by a 
low overpotential of 331mV at a current density of 
10mA cm−2 and a small Tafel slope of 50.4mV·dec−1, 
surpassing that of Co(OH)2 (386mV/80.7mV·dec−1) 
and Fe-PBA (360mV/60.9mV·dec−1), and comparable 
to commercial Pt/C (410mV/124mV·dec−1). EIS 
was conducted, as depicted in Figure 8C, and CoFe 
PBA exhibited a lower electron transfer resistance 

compared to pristine Co(OH)2, Fe-PBA and Pt/C. 
This suggests more efficient electron transport and 
enhanced OER kinetics in CoFe PBA. It is noteworthy 
that the CoFe PBA catalyst exhibited remarkable long-
term stability during the assessment. After 37h of 
continuous testing at current densities of 10mA·cm-2, 
the catalyst displayed negligible activity decay, as 
depicted in Figure 8D. By electrochemical oxidation, 
the CoFe PBA surfaces partially reconstitute CoOOH 
and FeOOH which serve as highly active catalysts 
for the OER, contributing to the sustained catalytic 
performance of CoFe PBA[43-47].

4 CONCLUSIONS
Our research underscores the critical importance 

of developing highly efficient catalysts for OER to 
advance electrochemical conversion technologies. 
Through electrochemical oxidation, the electrocatalytic 
performance of CoFe PBA was substantially enhanced. 
After 21,000CV cycles of testing, the CoFe PBA 
exhibits outstanding characteristics, including a 
low overpotential of 331mV at a current density of 
10mA·cm-2, a small Tafel slope of 50.4mV·dec-1, and 
exceptional long-term stability during electrolysis in a 
1M KOH alkaline medium for over 37h. These findings 
demonstrate the potential of CoFe PBA as a promising 
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Figure 8. CoFe PBA after Activation Exhibits an Excellent OER Performance. A: LSV curves; B: Tafel slopes images; C: 
EIS curves of CoFe PBA, Fe PBA, Co (OH)2, and Pt/C, and the current density-time curves; D: of CoFe PBA.
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OER catalyst. This is attributed to the conversion 
of CoFe PBA into CoOOH and a minor proportion of 
FeOOH during the oxidation reaction, which serve as 
the active sites for OER.
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