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Abstract
The hepatitis C virus (HCV), which has infected nearly fifty million individuals across 
the world, has recently been receiving significant attention. With the advent of artificial 
intelligence, there is an increasing effort to predict the HCV by utilizing machine learning 
models and training such models on relevant datasets. These data-driven models can 
aid doctors in the early detection of Hepatitis C infection. In this study, using datasets from 
the National Center for Health Statistics, we aim to develop a reliable model for predicting 
patients with positive hepatitis C tests. The most significant challenge in predicting such 
diseases using machine learning methods is finding an appropriate technique to address 
extremely imbalanced datasets, which arise from the smaller number of patients compared 
to healthy individuals in real-world datasets. We utilized real-world datasets and employed 
different machine learning algorithms, along with various methods for data balancing and 
feature selection. Unlike previous studies, which lacked this level of comprehensiveness, 
we utilized diverse feature selection and sampling methods such as Recursive Feature 
Elimination, Analysis of Variance (ANOVA) feature selection, Correlation matrix, synthetic 
minority over-sampling technique (SMOTE), BorderlineSMOTE, support vector machine 
synthetic minority over-sampling technique (SVMSMOTE), and Adaptive Synthetic 
Sampling (ADASYN) in conjunction with different machine learning algorithms including 
Random Forest, Decision Tree, XGBoost, AdaBoost, and logistic regression. We are the 
first to develop such a comprehensive study for the prediction of the HCV. Our findings 
suggest that we can predict patients infected by the HCV with a reasonable recall score 
of 0.86. This recall is achieved through the application of a model using the AdaBoost 
algorithm and the ADASYN method for balancing the dataset. The model's performance, 
especially on the validation dataset, was slightly better when we used ANOVA feature 
selection. Feature importance analysis conducted with ANOVA feature selection and 
Recursive Feature Elimination indicates that four to five features are the most prominent in 
our research analysis to predict patients with positive Hepatitis C tests.
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1 INTRODUCTION
The liver, as the largest internal organ in the human 

body, plays a vital role in detoxifying different substances 
and removing waste products from the body. It processes 
and filters toxic substances, drugs, alcohol, and harmful 
substances and converts them into less harmful products 

that can be excreted by the kidneys or intestines. Due to 
various factors such as poor and unhealthy lifestyles, a 
considerable percentage of the world’s population is at risk 
of developing liver diseases. According to the World Health 
Organization (WHO), hepatitis C virus (HCV) infection, one 
of liver diseases, has affected nearly 58 million individuals 
in the world. Since there is currently no effective vaccine 
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against HCV, early diagnosing is a crucial step in controlling 
the disease. 

The continuous advancement in mathematical modeling, 
particularly in the modeling with fractional calculus has shed 
light on the dynamics of various infections and has provided 
powerful tools to study the spread and control of diseases like 
pertussis, dengue, chikungunya, monkeypox, and HIV[1-6].  
Building on this trend of utilizing advanced mathematical 
techniques, our study will use ML models to analyze and 
predict HCV from simple datasets such as demographic 
data and blood tests. ML models, as opposed to traditional 
mathematical modeling which needs complex mathematical 
formulations, provide us with sophisticated predictive models 
by a straightforward method that involves extracting patterns 
and relationships from data. Building ML models can be a big 
step towards timely diagnosis and treatment, which reduces 
the risk of serious complications such as cirrhosis and liver 
cancer, saving thousands of human lives each year.

Several studies have been conducted to investigate HCV 
using artificial intelligence methods. Zdrodowska et al.[7] 
used a dataset containing information of 73 patients with 
three classes of HCV (a) without or with minor fibrosis, 
(b) with fibrosis, and (c) end-stage liver cirrhosis. The 
authors utilized four ML algorithms of Naive Bayes, J48, 
Support Vector Machine (SVM), and random fores tand 
two feature selection methods of Gain Ratio Attribute 
Evaluation and Info Gain Attribute Evaluation to predict 
these three classes. Their best model, which was based on 
the SVM algorithm correctly classified 75% of instances. 
Minami et al.[8] built an application to predict hepatocellular 
carcinoma development after the eradication of HCV with 
antivirals. They used data from 1,742 patients with chronic 
HCV who achieved a sustained virologic response. Five 
ML methods of DeepSurv, Gradient Boosting Survival, 
Random Survival Forest, Survival SVM, and Conventional 
Cox Proportional Hazard were used among which Random 
Survival Forest resulted in the best model performance. 
Ali et al.[9] used attenuated total reflection Fourier 
transform infrared spectroscopy to predict hepatocellular 
carcinoma development in patients infected by HCV. They 
utilized freeze-dried sera samples collected from 31 HCV-
related hepatocellular carcinoma patients and 30 healthy 
individuals. Their model results showed an accuracy of 
86.21% for the classification of the non-angio-invasive 
hepatocellular carcinoma/angio-invasive hepatocellular 
carcinoma status.

Ahn et al.[10] focused on developing a data-driven model 
that was able to distinguish between patients with acute 
cholangitis (AC) from individuals with alcohol-associated 
hepatitis (AH) based on several laboratory parameters 
that were easy to interpret. The dataset consisted of 459 
observations, including 265 from AH and 194 from AC. 
In total, eight ML algorithms were utilized: Decision Tree, 
Naive Bayes, logistic regression, K-Nearest Neighbour, SVM, 

Artificial Neural Networks, Random Forest, and Gradient 
Boosting. A single feature selection strategy was utilized to 
select most important features. The authors indicated that 
their best model could achieve an accuracy of 0.932 and 
an area under the curve (AUC) of 0.986. Using a feature 
selection method they could further improve the model 
performance. Park et al.[11] trained Multivariable logistic 
regression, Elastic Net, Random Forest, Gradient Boosting, 
and Feedforward Neural Network ML models to predict direct-
acting antiviral treatment failure among patients with HCV 
infection. They analyzed a total of 6,525 samples. Their best 
model was the Gradient Boosting model, with a recall of 
66.2%. Farghaly et al.[12] utilized a dataset with 859 samples 
that included 11 different features. They modeled HCV, using 
Naive Bayes, Random Forest, K-Nearest Neighbor, and logistic 
regression. In addition, they used the sequential forward 
selection-based wrapper feature selection. The outcomes of 
this study revealed that the random forest model was the 
best at predicting HCV, with 94.88% accuracy and a recall 
of 84.52%. Kim et al.[13] employed National Health and 
Nutrition Examination Survey (NHANES) data from 2013-
2018 to build a model predicting HCV and Hepatitis B Virus 
(HBV) among diabetic patients. Their datasets included 1,396 
diabetic samples with mean age of 54.66 years, among 
which 64 samples were those infected by HBV or HCV and 
1,332 records were without HBV or HCV infection. They built 
several models including random forest, SVM, XGBoost, least 
absolute shrinkage and selection operator (LASSO), and 
stacked ensemble model. To mitigate the unequal sample 
problem among the different classes, authors used the 
SMOTE method. They concluded that the LASSO model was 
the best performer with a classification AUC-ROC of 0.810. 
Lilhore et al.[14] employed a workflow that included sampling 
using SMOTE, feature selection, and a hybrid predictive 
model using a random forest improved algorithm and SVM 
to predict HCV. They used a dataset with 1,756 records, 
consisting of 1,056 unhealthy and 700 healthy samples. 
Their model demonstrated an accuracy of 41.541% (recall 
score of 40.55%) without SMOTE and 96.82% (recall score 
of 99.13%) with Synthetic Minority Over-sampling Technique 
(SMOTE).

1.1 Originality and Innovations Compared to 
Previous Works

To our knowledge, no studies predicting HCV have 
employed a comprehensive approach combining various 
sampling methods and feature selection techniques to train 
models on real-world datasets. One of the main limitations 
of some past studies is the use of an improper metric. For 
instance, accuracy is not an appropriate metric when the 
data classes are imbalanced as it mainly evaluates the 
model performance on the majority class. Another limitation 
in some studies is the dataset size. Limited sample size 
restricts the model’s ability to generalize, as increasing the 
number of data samples typically enhances the model’s 
generalizability to new, unseen data. Moreover, selecting 
appropriate samples with a realistic distribution of healthy 
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and unhealthy samples is another missing point in some 
previous studies. In the real world, the number of patients 
infected with HCV is much smaller than that of healthy 
individuals. Another limitation in many studies was the 
absence of using complementary methods, such as various 
feature selection and sampling techniques, to improve 
model performance. Since sampling of minority classes and 
eliminating irrelevant features can significantly enhance 
model performance and simplify model application, it is 
essential to explore models with different sampling and 
feature selection methods to achieve optimal performance.

In this study, we specifically aim to address and 
overcome several of the limitations identified in previous 
studies. Using five distinct ML models (logistic regression, 
decision tree, random forest, AdaBoost, and XGBoost), 
we explore the impact of various sampling methods 
(SMOTE, BorderlineSMOTE, support vector machine 
synthetic minority over-sampling technique (SVMSMOTE), 
and Adaptive Synthetic Sampling (ADASYN)) and feature 
selection approaches (correlation matrix, Recursive Feature 
Elimination and Analysis of Variance (ANOVA) feature 
selection) on model performance. Moreover, we utilize real-
world datasets of NHANES, which strengthens our work 
in a thorough and data-informed manner. In this study, 
we develop and assess 40 different models to determine 
the best predictive model for HCV. The aim is to provide 
a rigorous and generalizable framework which addresses 
the challenges of imbalanced data and limited sample 
sizes often encountered in previous studies. This paper is 
structured as follows: we first describe the dataset used 
in this study. Next, we explain the methods including data 
preparation, ML algorithms, feature selection techniques, 
sampling methods utilized in this study, and hyperparameter 
tuning. We then detail the model-building process. Finally, 
we present and discuss the model results and draw our 
conclusions.

2 DATASET
In this study, we used open datasets from the National 

Center for Health Statistics (NCHS), which is a division of the 
Centers for Disease Control and Prevention (CDC) under the 
United States Department of Health and Human Services 
(HHS). The NCHS is responsible for collecting health data 
using different methods such as surveys and administrative 
data systems. Among its other responsibilities are analyzing 
and publicizing data on its website to be accessible 
worldwide. The main characteristics of the data provided by 
NCHS are their high accuracy, integrity, and objectivity.

Here, we focused on NHANES datasets, which are publicly 
available and anonymized. The use of these datasets complies 
with all ethical guidelines, as the data is de-identified and 
poses no risk to individual privacy. We used demographic, 
physical examination results, and laboratory data spanning 
the years 2005 to 2020. The NCHS typically releases these 
datasets in two-year cycles, except for the years 2017-2020, 

which were issued as combined datasets spanning three 
years. These datasets are available via multiple files to enrich 
accessibility and usability. After extracting, merging, and 
cleaning the datasets from the NCHS website, we obtained a 
dataset with a total of 10,818 data points. Among these data, 
there were only 197 positive HCV test samples, highlighting 
an extremely imbalanced dataset. Addressing this imbalance 
was a critical step in our analysis.

3 METHODS
To classify and predict patients infected with HCV, we 

have tested several ML algorithms. Due to the fact that the 
number of HCV-infected individuals is much smaller than 
that of uninfected ones, we have applied some techniques to 
deal with the highly imbalanced data. We have also applied 
some feature selection techniques to remove non-essential 
features, leading to an improvement in model performance 
and a reduction of computation time. Following is a brief 
description of data preparation, the techniques used to 
address the imbalanced dataset, followed by descriptions of 
the ML algorithms, feature selection methods employed in 
this study, and hyperparameter tuning.

3.1 Data Preparation and Exploratory 
Data Analysis (EDA)

The dataset used in this study was obtained from the 
website of NCHS. The original data were stored in the 
format of XPT, which stands for statistical analysis system 
transport file. In the first step, we converted the format 
of datasets from XPT to Comma Separated Value (CSV), 
which is a user-friendly and easy-to-use format. Next, we 
explored and analyzed the datasets. The datasets included 
three classes of positive, negative, and negative screening 
HCV Antibody. We merged the negative and negative 
screening HCV Antibody classes into a single negative 
class. The resulting datasets were highly imbalanced two-
class datasets. To address the missing values in highly 
imbalanced datasets, we imputed them by using the mean 
of each feature within its respective class. In the next step, 
we merged all the datasets from different years. Then, we 
applied a logarithmic transformation to scale the data and 
transfer them to a nearly normal distribution. Subsequently, 
by analyzing the correlation matrix, we removed two 
features that were highly correlated with other features. 
A more detailed description of the EDA process will be 
discussed later in the “ML models” section.  

3.2 Strategies for Handling Imbalanced 
Datasets

Classification problems are highly dependent on having 
a nearly balanced dataset. In imbalanced datasets, 
accuracy represents the evaluation of model performance 
in predicting the majority class. In such cases, when 
an appropriate metric that reflects model performance 
in classifying the minority class (for instance F1-score 
or Recall) is used, it becomes evident that the model 
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performance for predicting the minority class is poor. Since 
the number of samples in the minority class is low, the 
model cannot capture the patterns within the minority 
class data effectively. Therefore, it is essential to balance 
data before training the models. Since our dataset is highly 
imbalanced, we employed the following methods: 

3.2.1 SMOTE
Oversampling the minority class instances is one of the 

methods to address the problem of imbalance datasets. 
There are numerous methods to oversample instances of the 
minority class. The most straightforward way, which leads 
to balance in distribution, is to duplicate existing samples 
from the minority class. Duplication does not, however, add 
any new information to the model. A more sophisticated 
method of oversampling the minority class appears to involve 
the synthesizing of new examples from the minority class. 
SMOTE is one of the common means of synthesizing new 
examples by selecting instances that are close together in 
the feature space and generating new samples from minority 
class instances by interpolation[15,16]. In this approach, a 
synthetic sample of a given feature is created by interpolation 
between a randomly selected instance from the minority 
class and one or more of its neighbors. Balancing classes 
by sampling of minority instances reduces bias caused by 
the imbalanced data which leads to an improvement in the 
performance of ML models.

3.2.2 BorderlineSMOTE
BorderlineSMOTE as an extension of SMOTE is the 

one that deals with the borderlines of the minority class. 
Borderlines are the areas near the dividing lines between 
the minority and majority classes where the probability of 
errors made by the model is high. BorderlineSMOTE is a 
model that uses SMOTE to synthesize new observations 
of the minority class near the boundary between the 
two classes[17]. In this model, the borderline samples are 
identified by KNN (K-Nearest Neighbors) approach.

3.2.3 SVMSMOTE 
Another extension of SMOTE is SVMSMOTE, which integrates 

the principles of SMOTE with SVM to produce synthetic samples 
for the minority class[18]. Like BorderlineSMOTE, SVMSMOTE 
focuses on borderline instances in the minority class. It uses 
support vectors, which are data points located close to the 
decision boundary between different classes, for synthetic 
sample generation. This is in contrast to BorderlineSMOTE in 
which the KNN (K-Nearest Neighbors) method is used to identify 
borderline instances.

3.2.4 ADASYN
Similar to SMOTE, the ADASYN has been invented to 

overcome the issue of class imbalance by producing simulated 
examples for the minority class. In this method, the generation 
of synthetic samples is carried out adaptively, which means 
that the method adjusts itself according to the areas that 

are difficult to learn in the feature space. This is in contrast 
to SMOTE, which produces synthetic samples uniformly. 
ADASYN generates more synthetic data for minority instances 
that are harder to classify. Consequently, it enhances model 
performance by reducing the bias originating from class 
imbalance and dynamically adjusting the classification decision 
boundary towards challenging instances[19].

3.3 ML Algorithms
Artificial Intelligence approaches have been heavily 

exploited in the development of data-driven models. ML 
as a part of AI, has numerous applications across multiple 
domains such as environmental science, social sciences, 
business, and life sciences. ML models are based on 
analyzing the data and recognizing patterns within it. These 
models in turn can be employed as predictive means. 

In this study, five supervised ML algorithms were used to 
predict patients infected with HCV. Supervised ML algorithms 
work on labeled data. At first, patterns and relationships in 
labeled training datasets are learned by the model. After 
the training, the model will predict or make decisions on 
new unknown unlabeled datasets. Below, we provide a brief 
explanation of the algorithms used in this paper.

3.3.1 Logistic Regression
Logistic regression is a supervised learning algorithm 

that is based on statistical methods, capable of predicting 
binary processes. Its algorithm is based on estimating the 
probability of a sample falling into a particular class. The 
logistic regression algorithm is like the linear regression 
method that models the dataset by fitting a line to it. 
However, instead of fitting a line, logistic regression uses a 
sigmoid function (which maps any number into a number 
between 0 and 1) to predict the relationship between the 
independent (features) and the binary dependent (target) 
variables[20]. The main difference between linear and 
logistic regression methods is in their applications: linear 
regression is used in regression problems (for predicting 
continuous values) while logistic regression is utilized in 
classification problems. It is noteworthy to mention that 
logistic regression behaves inadequately when the classes 
are heavily imbalanced. Therefore, it is important to balance 
the datasets when using this algorithm. 

3.3.2 Decision Tree Classification
Decision tree is another powerful widely-used ML 

method. The decision tree structure resembles a tree 
with a root node and its branches that are expanded into 
further branches[21]. Decision tree relies solely on binary 
responses to simple yes or no questions to arrive at an 
outcome. The algorithm mimics our own thinking ability, 
which can lead to easy conceptualization. The decision 
tree can be used for both classification and regression 
problems. The major disadvantage of the decision tree is 
its tendency to overfitting (performing well on the training 
dataset but poorly on a new dataset), particularly in models 
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composed of deep trees or through noise in the dataset. If 
overfitting occurs, there are several methods to overcome 
this problem. For instance, constraining the maximum 
depth or using a bagging method (for instance an ensemble 
technique) can help resolve the problem of overfitting.

3.3.3 Random Rorest Classification
Another extremely popular supervised ML algorithm is 

the random forest algorithm. The random forest algorithm 
can be developed for both classification and regression 
problems. As the name suggests, the random forest is 
based on developing multiple decision trees to assist in 
resolving complex problems[22]. 

Random forest is an ensemble learning method that 
combats complex problems by taking multiple classifiers/
regressors and combining them for a definitive outcome. It 
relies on the bagging technique which splits the dataset into ‘n’ 
number of subsets. The decision trees are then constructed 
on each of these ‘n’ subsets. In other words, random forest 
is based on constructing multiple models independently on 
different subsets of data (bagging) that results in a robust 
model for overcoming the overfitting problem.

3.3.4 AdaBoost Classification 
AdaBoost, short for Adaptive Boosting, is another 

ensemble learning technique used for both classification 
and regression tasks. It is based on the Boosting method in 
which a sequence of weak classifiers is iteratively trained on 
different subsets of the data[23]. In each iteration, weights 
are assigned to the samples to ensure that the samples 
that were misclassified in the previous iteration are given 
higher weights. In other words, the misclassified samples 
are prioritized such that the next weak classifier improves 
model performance.

3.3.5 XGBoost Classification
Extreme Gradient Boosting or XGBoost, builds and 

combines decision trees using a Gradient Boosting approach. 
It has been widely used in countless ML tasks, both in 
regression and classification problems[24]. XGBoost, like 
AdaBoost, uses a Boosting method that builds a prediction 
model from consecutive weak predictors. The model focuses 
on those instances with higher weight assignments - these 
instances were classified poorly in the previous iteration. 
By focusing more on instances with higher weights, model 
performance improves. The training procedure is based on 
maximizing differentiable loss functions.

3.4 Feature Selection
In an ML task, we often deal with large datasets containing 

various features. Incorporating some of these features 
into the model training might make the predictions worse. 
Besides, the contribution of some features to the model 
training might be negligible, however, their inclusion in the 
model is computationally expensive. Thus, feature selection is 

a critical step in creating ML models through the recognition 
of the most significant and relevant features. The primary 
benefits of using feature selection are the improvement of 
the performance of the ML model and computational savings. 
There are many methods for feature selection, and here, 
we used three of them, which are the correlation matrix, 
recursive feature elimination (RFE), and ANOVA feature 
selection.

3.4.1 Correlation Matrix
The correlation, which measures the linear relationship 

of a pair of features in the dataset, is one of the popularly 
used feature selection methods, especially when there is a 
linear relationship between the features[25,26]. The correlation 
matrix indicates how strongly and in which direction two 
features are related. By calculating pairwise correlations 
between features, we can assess which features are highly 
correlated with the target variable and with each other. 
The presence of a feature with a weak relationship with the 
target variable in the model reduces the impact of some 
potentially important features. Besides, the inclusion of 
features that are highly correlated with each other, adds 
computational complexities to the model, without improving 
model performance. Therefore, eliminating features that are 
highly correlated with each other or have a poor relationship 
with the target may improve model performance.

3.4.2 RFE
RFE is a feature selection approach that is based on 

removing features sequentially until it reaches the number 
of desired features[27,28]. It utilizes the backward selection 
method to establish an ideal combination of features. In this 
process, first, the model is trained on all features and then 
the importance score for each variable is evaluated and the 
feature with the least importance is removed. This process 
is repeated until the number of desired features is reached. 
Then the model is trained and run with only the important 
features again. The number of desired features is assumed 
to be known in RFE, which can either be obtained from 
other sources, for instance from previous modeling systems/
studies, or through hyperparameter tuning. In this study, we 
obtain the number of desired features by considering it as a 
model hyperparameter, which is tuned before model training.  

3.4.3 ANOVA Feature Selection
Another feature selection method used in this study is 

the ANOVA ranking scheme, which is based on a statistical 
test called the F-test. In this approach, features are ranked 
through the ratio of variances between groups and within 
groups[29]. After the ranking of features, we then remove low-
ranked features. Since one of the assumptions in the F-test is 
that the data is normally distributed, we must account for a 
dataset that is close to a normally distributed dataset. 

3.5 Hyperparameter Tunning
Hyperparameters are parameters that control the 
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learning process and must be set before model training. 
The principal difference between hyperparameters and 
parameters of the model is that hyperparameters are tuned 
prior to training, while parameters of the model are the 
end results of the ML process. Hyperparameter tuning is 
critical in any ML model; the correct hyperparameter tuning 
could drastically improve the model, while the incorrect 
hyperparameter tuning may cause underfitting (performing 
poorly on both training and validation data) or overfitting of 
the model. The goal is always to find the hyperparameters 
leading to the best model performance on both the training 
and validation datasets.

There are various ways to tune hyperparameters including 
grid search, random search, and Bayesian optimization. 
In this work, we utilize random search, which is based 
on random sampling from various combinations of hype-
parameter values within a specified range. The performance 
of hyperparameter tuning is evaluated by K-fold cross-
validation, where the dataset is divided into K folders with K-1 
training folders and one validation set.

4 ML MODELS
As indicated earlier, a total of 10,818 samples from 

the NHANES dataset were used to develop a data-driven 
model for HCV prediction. Figure 1 shows the workflow 
that we followed in this study. The first step was to select 

Figure 1. The Workflow Used in this Study which Includes Several Key Stages: Data Preparation, EDA, Feature 
Selection, Data Splitting, and Model Training and Validation. A detailed explanation of this workflow is provided in the ‘ML 
models’ section of the text. 

the datasets and their features from the NHANES website. 
Datasets spanning from 2005 to 2020 with 25 features were 
chosen (Table 1). After data extraction and preparation, we 
conducted an Exploratory Data Analysis (EDA) to analyze 
the dataset. Missing values for each feature were imputed 
using the mean of that feature within its respective class.

Next, we explored the statistical distribution of features. 
The data distribution of most of the features showed a 
right-skewed distribution. To make the data distributions 
more symmetric and normal-like, we used a logarithmic 
transformation. By doing this transformation,  the distribution 
of most of the features became nearly normal (Figure 2) 
which is a favorable condition for certain ML algorithms 
like linear regression, and logistic regression. Besides, 
logarithmic transformation results in data scaling, which is 
one of the essential steps in any ML models. In the next 
step, we eliminated features with high correlation using 
a correlation matrix which indicates how two features 
correlate. The correlation matrix showed that there were high 
correlations between LDL cholesterol and total cholesterol 
as well as waist circumference and BMI (Figure 3). To avoid 
unnecessary complexity of the model and help in speeding 
up computations, we eliminated LDL cholesterol and waist 
circumference features. 

In the next step, the dataset was divided into three 
subsets: train, test, and validation. The training dataset, 
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Table 1. Features Used in ML Models

Feature Mean Value ± Variance Feature Mean Value ± Variance

Age (year) 43.19±20.67 LDL-Cholesterol (mmol/L) 2.74±0.90

Albumin (mg/L) 43.0±246.52 Lymphocyte number (1000 cells/uL) 2.08 ± 0.68

Alkaline phosphates (IU/L) 78.47±52.40 Monocyte number (1000 cells/uL) 0.55 ± 0.18

Alanine transaminase (U/L) 23.64±16.64 Platelet count (1000 cells/uL) 236.45±60.85

Aspartate amino-transferase (AST) (U/L) 24.86±20.57 Red blood cell count (1000 cells/uL) 4.72±0.49

Body mass index (BMI) (kg/m2) 28.11±7.33 Total Bilirubin (mg/dL) 0.67±0.30

Creatinine (mg/dL) 123.83±76.09 Total Cholesterol (mmol/L) 4.71±1.07

Eosinophils number (1,000 cells/uL) 0.21±0.20 Total Protein (g/L) 71.08±4.57

Gender (male/female) 1.52±0.50 Triglyceride (mmol/L) 1.27±1.30

Gamma-glutamyl transferase (IU/L) 25.49±33.38 Uric acid (umol/L) 320.10±82.68

Globulin (g/L) 28.41±4.38 Waist Circumference (cm) 95.86±17.43

HDL-Cholesterol (mmol/L) 1.39±0.40 White blood cell count (1000 cells/uL) 6.89±2.16

Hemoglobin (g/dL) 14.06±1.52

Figure 2. Data Distribution of Features After Applying Logarithmic Transformation. The distribution of most features is 
close to a normal distribution.
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Figure 3.  Correlation Matrix. The matrix shows that BMI and total cholesterol are highly correlated with waist circumference 
and LDL cholesterol, respectively, which may not be favorable for some ML algorithms.

which was used for training the models to capture the main 
pattern of the data, was considered to be 70% of the total 
dataset (excluding the dataset of years 2013-2014 which 
was considered as the validation dataset). The remaining 
30% of the data was utilized to test the performance of the 
models. The validation dataset, which was the dataset of 
years 2013-2014, was used to assess model performance 
on new, unseen datasets. Due to the highly imbalanced 
dataset, we divided the dataset into test and train data 
using stratified sampling, in which the samples are selected 
in the same proportion concerning the number of majority 
and minority instances. This guarantees that minority class 
samples are available in both test and train datasets. 

To implement the sampling methods, feature selection 
techniques, and ML algorithms, we built a pipeline using the 
pipeline library in Python. Our pipeline includes one sampling 
method, one feature selection technique, and five ML 
algorithms. For each sampling and feature selection method 
we developed a new pipeline (we repeated the stages of 
building a pipeline till the evaluation of the model in Figure 1  
eight times to include different sampling (four methods) 
and feature selection (two methods) techniques). In each 
pipeline, the first step is to balance the imbalanced dataset 
by adding synthetic samples to the minority class, using a 
sampling method. Then, relevant features were selected 
by evaluating the feature importance scores after building 
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an ML model. Since training the model only on one training 
dataset and evaluating the result with test data does not 
usually guarantee the reliability of model performance on 
new and unseen datasets, we used stratified K-fold cross-
validation[30] to evaluate the generalization of the model. 
In stratified K-fold cross-validation, the training dataset is 
divided into K subsets and the model is trained K times. Each 
time, K-1 subsets are used as training data and one subset is 
considered as the test data. In this way, the model results are 
more robust as the model is trained and evaluated multiple 
times on unseen datasets. Since our dataset is imbalanced, 
we used stratified K-fold cross-validation, where the training 
data is split into K subsets such that the proportion of each 
class is preserved in each subset. To simultaneously tune 
hyperparameters, we employed nested stratified K-fold cross-
validation, a method used to evaluate model performance 
and concurrently optimize its hyperparameters. In nested 
stratified K-fold cross-validation, hyperparameters are tuned 
in the inner loop by examining different hyperparameter 
configurations. In the outer loop, the model performance is 
evaluated. In this study, we used 10-fold cross-validation for 
inner and outer loops. This means that in each loop the data 
was divided into 10 subsets and each subset served as the 
validation set once, while the remaining 90% was used for 
training. While 10-fold cross-validation can improve model 
performance, it is computationally expensive, which is one 
of the limitations of using large values for K in the K-fold 
cross-validation process. For tuning hyperparameters, there 

Table 2. Hyperparameters for Different ML Models, Feature Selection Approaches, and Sampling 
Techniques Used in This Study Along with Their Value Ranges

Hyperparameters and Their Value Ranges

AdaBoost N_estimators [50, 100, 150, 200, 250]
Learning_rate [0.01, 0.001, 0.005]

Decision Tree Criterion [“gini”, “entropy”]
Splitter [“best”, “random”]

Max_depth [5, 8]

Random Forest Max_depth [5, 8]
N_estimators [50, 100, 200, 270]

Min_samples_split [2, 4]
Min_samples_leaf [1, 2, 4]

XGBOOST Learning_rate [0.001, 0.007]
Max_depth [5, 7]

Min_child_weight [1, 3, 5, 7]
Gamma [0.4, 0.2]

Logistic Regression C [10-4, 10-3, 10-1, 103]

SMOTE Sampling_strategy [“auto”, “minority”, 0.8]
K_neighbors [5, 8, 10]

ADASYN Sampling_strategy [“auto”, “minority”, 0.8]
K_neighbors [5, 8, 10]

SVCSMOTE Sampling_strategy [“auto”, “minority”, 0.8]
K_neighbors [5, 8, 10]

BorderlineSMOTE Sampling_strategy [“auto”, “minority”, 0.8]
K_neighbors [5, 8, 10]

ANOVA K [4, 5, 8, 10, 15, 20, 23]

RFE K [4, 5, 8, 10, 15, 20, 23]

are various methods for selecting different combinations of 
hyperparameters. Here, we used random search[31], which 
randomly samples a fixed number of parameter settings from 
specified hyperparameters. Table 2 lists the hyperparameters 
that were tuned in our study including hyperparameters 
of ML algorithms, the number of desired features, and 
hyperparameters of sampling techniques along with their 
specified ranges of values. 

To better evaluate the performance of models, we plotted 
learning curves for each of our models. The plot of learning 
curves, which shows how well a model learns from the data 
and how well it generalizes to new and unseen data, is a 
great tool for evaluating model performance and identifying 
overfitting or underfitting. We also applied the best ML 
model to the 2013-2014 validation dataset to assess its 
robustness and generalizability.

5 MODEL RESULTS AND DISSCUSION
In this study, we developed ML models using decision tree, 

random forest, XGBoost, AdaBoost, and logistic regression 
algorithms. We conducted a total of 40 ML models with a 
combination of various ML algorithms, feature selection 
approaches, and sampling techniques. Table 3 summarizes 
the results of different models. We assessed the performance 
of our models with multiple metrics such as accuracy, 
precision, recall, F1-score, and confusion matrix. A confusion 
matrix can be defined as a table that allows a classification 
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model's performance to be effectively summarized by 
displaying the number of true positives (TP), true negatives 
(TN), false positives (FP), and FN (FN):

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Accuracy, precision, recall and F1-score are defined as:

It is noteworthy to indicate that in this study, the best model 
was evaluated based on recall scores of the minority class. This 
is because our aim here is to develop a model with a minimum 
error in predicting patients with positive HCV, meaning a model 
with a minimum number of FN. Recall score is a relevant metric 
where misclassification of positive instances (FN) has a high 
cost. The recall scores of the minority class in our models range 
from 0.53 to 0.86, with FN number of 23 and 7, respectively. 
The best model performance with a recall score of 0.86 and 
7 FN was achieved when we used the AdaBoost classifier 
in combination with ADASYN sampling, regardless of the 
feature selection methods (models M11 and M12 in Table 3). 
 XGBoost models with different sampling methods and feature 
selection techniques gave poor results in the prediction of 
minority class in our study. However, the best accuracy scores 
are related to XGBoost, random forest, and logistic regression 
models with the SVCSMOTE sampling method (models 
M25-M30). This reveals that these models perform well in 
predicting healthy individuals (Negative samples) which are 
the majority, confirming that the accuracy score is not a 
suitable metric in models dealing with a highly imbalanced 
dataset. 

As seen in Table 3, random forest models nearly 
always perform well in predicting negative samples 
when employing different sampling and feature selection 
methods. This indicates the robustness and ability of the 
random forest algorithm in prediction, especially when 
the data is almost balanced. The numbers of incorrectly 
classified negative samples of our best models (models M11 
and M12), in which the AdaBoost algorithm and ADASYN 
sampling method were used, are 289 and 368 for RFE and 
ANOVA feature selection techniques, respectively. Results 
of models like random forest and XGBoost show a better 
prediction for negative examples, however, here we aim 
to minimize error in predicting positive samples since the 
cost of prediction error for positive samples is high. There 
is no risk in misclassifying healthy individuals. The only 
consequence of this misclassification is taking a follow-up 
HCV test. However, errors in positive samples’ prediction can 
delay the treatment process which may result in the further 
development of disease and threaten the life of patients. 

Based on our results from models using various sampling 
and feature selection methods, the ADASYN sampling 
technique consistently enhances model performance in 
predicting positive samples across almost all algorithms 
(M11-M20). In contrast, while other sampling methods 
enhanced model performance with certain algorithms, 
they did not consistently improve performance for all 
models. This emphasizes the strengths of ADASYN and its 
applicability for producing trustworthy predictive models 
across various algorithms.

Across various ML algorithms, SMOTE showed better model 
performance compared to SVCSMOTE and BorderlineSMOTE, 
while SVCSMOTE demonstrated the lowest model 
performance. The best model performance for ADASYN, 
SMOTE, SVCSMOTE, and BorderlineSMOTE was achieved 
when we used AdaBoost, logistic regression, AdaBoost, and 
decision tree, respectively (Table 3). These outcomes illustrate 
how important it is to use the correct sampling method for 
different algorithms when dealing with highly imbalanced 
datasets. Comparing different feature selection methods, we 
found that the ANOVA feature selection gave slightly better 
model performance than RFE, and this was more apparent 
when we evaluated our best model on the validation dataset, 
where the recall score increased from 0.77 to 0.89 (Table 4). 

Table 5 compares our study with those of Farghaly et 
al.[12] and Lilhore et al.[14], which are two studies similar 
to the current one. The contents of this table clearly 
demonstrate the comprehensiveness and excellent 
performance of our model. Our best model recall score 
is better than the recall score of models in Farghaly et 
al.[12]. However, it is slightly lower than that in Lilhore et 
al.[14]. The reason for the lower recall score in our study 
compared to Lilhore et al.[14] can be attributed to the nature 
of the datasets. In our study, the number of samples in 
the minority class (people affected by HCV) is 1.82% of 
the total number of samples while in Lilhore et al.[14] it is 
39.86%. This difference indeed reflects our choice of real-
world datasets and the challenge of training a model on a 
highly imbalanced dataset. Considering the percentage of 
imbalanced data, our approach to tackling the problem of 
imbalanced datasets is unique and satisfactory. Noteworthy 
to mention that the workflow of our study is similar to 
Lilhore et al.[14], which is among few studies in which both 
sampling and feature selection were considered. The 
main difference is that here due to dealing with extremely 
imbalanced data (which is common in clinical datasets) we 
employed various sampling and feature selection methods 
to identify a model with the best performance. Another 
difference lies in the ML algorithms utilized: Lilhore et al.[14] 
used a hybrid ML model based on an improved random 
forest and SVM, whereas we employed five distinct ML 
algorithms to find the most appropriate one. In this respect, 
we are the first to implement a sophisticated workflow for 
training ML models on a real-world dataset to predict HCV.

Fractional calculus models are considered one of the 
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Table 3. Model Results of Different ML Algorithms, Sampling and Feature Selections Techniques

Algorithm
Model 
Name

Feature 
Selection

Classification Report
Confusion Matrix

Recall 
(minority)Precision Recall F1-score

AdaBoost+ 
SMOTE

M1 RFE 0 0.14 0.76 0.23

37 12
236 2017

0.76

1 0.99 0.90 0.94

accuracy 0.89

macro avg 0.56 0.83 0.59

weighted avg 0.98 0.89 0.93

M2 ANOVA 0 0.14 0.80 0.23

39 10
247 2006

0.80

1 1.00 0.89 0.94

accuracy 0.89

macro avg 0.57 0.84 0.59

weighted avg 0.98 0.89 0.92

Decision Tree 
+SMOTE

M3 RFE 0 0.15 0.59 0.24

29 20
168 2085

0.59

1 0.99 0.93 0.96

accuracy 0.92

macro avg 0.57 0.76 0.60

weighted avg 0.97 0.92 0.94

M4 ANOVA 0 0.16 0.65 0.26

32 17
166 2087

0.65

1 0.99 0.93 0.96

accuracy 0.92

macro avg 0.58 0.79 0.61

weighted avg 0.97 0.92 0.94

Random Forest+ 
SMOTE

M5 RFE 0 0.18 0.76 0.29

37 12
165 2088

0.76

1 0.99 0.93 0.96

accuracy 0.92

macro avg 0.59 0.84 0.63

weighted avg 0.98 0.92 0.95

M6 ANOVA 0 0.21 0.80 0.33

39 10
150 2103

0.80

1 1.00 0.93 0.96

accuracy 0.93

macro avg 0.60 0.86 0.65

weighted avg 0.98 0.93 0.95

XGBOOST+ 
SMOTE

M7 RFE 0 0.20 0.67 0.30

33 16
135 2118

0.67

1 0.99 0.94 0.97

accuracy 0.93

macro avg 0.59 0.81 0.63

weighted avg 0.98 0.93 0.95

M8 ANOVA 0 0.19 0.65 0.29

32 17
139 2114

0.65

1 0.99 0.94 0.96

accuracy 0.93

macro avg 0.59 0.80 0.63

weighted avg 0.97 0.93 0.95

Logistic Regression+ 
SMOTE

M9 RFE 0 0.14 0.76 0.23

37 12
237 2016

0.76

1 0.99 0.89 0.94

accuracy 0.89

macro avg 0.56 0.82 0.59

weighted avg 0.98 0.89 0.93

M10 ANOVA 0 0.16 0.82 0.27

40 9
209 2044

0.82

1 1.00 0.91 0.95

accuracy 0.91

macro avg 0.58 0.86 0.61

weighted avg 0.98 0.91 0.93
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AdaBoost+ADASYN M11 RFE 0 0.13 0.86 0.22

42 7
289 1964

0.86

1 1.00 0.87 0.93

accuracy 0.87

macro avg 0.56 0.86 0.58

weighted avg 0.98 0.87 0.91

M12 ANOVA 0 0.10 0.86 0.18

42 7
368 1885

0.86

1 1.00 0.84 0.91

accuracy 0.84

macro avg 0.55 0.85 0.55

weighted avg 0.98 0.84 0.89

Decision 
Tree+ADASYN

M13 RFE 0 0.15 0.67 0.24

33 16
189 2064

0.67

1 0.99 0.92 0.95

accuracy 0.91

macro avg 0.57 0.79 0.60

weighted avg 0.97 0.91 0.94

M14 ANOVA 0 0.15 0.76 0.25

37 12
209 2044

0.76

1 0.99 0.91 0.95

accuracy 0.90

macro avg 0.57 0.83 0.60

weighted avg 0.98 0.90 0.93

Random Forest+ 
ADASYN

M15 RFE 0 0.19 0.78 0.30

38 11
166 2087

0.78

1 0.99 0.93 0.96

accuracy 0.92

macro avg 0.59 0.85 0.63

weighted avg 0.98 0.92 0.95

M16 ANOVA 0 0.19 0.78 0.30

38 11
166 2087

0.78

1 0.99 0.93 0.96

accuracy 0.92

macro avg 0.59 0.85 0.63

weighted avg 0.98 0.92 0.95

XGBoost+ADASYN M17 RFE 0 0.15 0.71 0.25

35 14
200 2053

0.71

1 0.99 0.91 0.95

accuracy 0.91

macro avg 0.57 0.81 0.60

weighted avg 0.98 0.91 0.94

M18 ANOVA 0 0.14 0.82 0.23

40 9
253 2000

0.82

1 1.00 0.89 0.94

accuracy 0.89

macro avg 0.57 0.85 0.59

weighted avg 0.98 0.89 0.92

Logistic Regression+ 
ADASYN

M19 RFE 0 0.15 0.76 0.25

37 12
208 2045

0.76

1 0.99 0.91 0.95

accuracy 0.90

macro avg 0.57 0.83 0.60

weighted avg 0.98 0.90 0.93

M20 ANOVA 0 0.13 0.76 0.23

37 12
239 2014

0.76

1 0.99 0.89 0.94

accuracy 0.89

macro avg 0.56 0.82 0.58

weighted avg 0.98 0.89 0.93
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AdaBoost+ 
SVCSMOTE

M21 RFE 0 0.14 0.67 0.23

33 16
211 2042

0.67

1 0.99 0.91 0.95

accuracy 0.90

macro avg 0.56 0.79 0.59

weighted avg 0.97 0.90 0.93

M22 ANOVA 0 0.13 0.69 0.22

34 15
226 2027

0.69

1 0.99 0.90 0.94

accuracy 0.90

macro avg 0.56 0.80 0.58

weighted avg 0.97 0.90 0.93

Decision 
Tree+SVCSMOTE

M23 RFE 0 0.16 0.69 0.26

34 15
182 2071

0.69

1 0.99 0.92 0.95

accuracy 0.91

macro avg 0.58 0.81 0.61

weighted avg 0.98 0.91 0.94

M24 ANOVA 0 0.17 0.59 0.27

29 20
137 2116

0.59

1 0.99 0.94 0.96

accuracy 0.93

macro avg 0.58 0.77 0.62

weighted avg 0.97 0.93 0.95

Random Forest+ 
SVCSMOTE

M25 RFE 0 0.24 0.59 0.34

29 20
91 2162

0.59

1 0.99 0.96 0.97

accuracy 0.95

macro avg 0.62 0.78 0.66

weighted avg 0.97 0.95 0.96

M26 ANOVA 0 0.25 0.57 0.35

28 21
85 2168

0.57

1 0.99 0.96 0.98

accuracy 0.95

macro avg 0.62 0.77 0.66

weighted avg 0.97 0.95 0.96

XGBoost+SVCSMOTE M27 RFE 0 0.21 0.55 0.30

27 22
103 2150

0.55

1 0.99 0.95 0.97

accuracy 0.95

macro avg 0.60 0.75 0.64

weighted avg 0.97 0.95 0.96

M28 ANOVA 0 0.21 0.55 0.30

27 22
104 2149

0.55

1 0.99 0.95 0.97

accuracy 0.95

macro avg 0.60 0.75 0.64

weighted avg 0.97 0.95 0.96

Logistic Regression+ 
SVCSMOTE

M29 RFE 0 0.23 0.63 0.34

31 18
103 2150

0.63

1 0.99 0.95 0.97

accuracy 0.95

macro avg 0.61 0.79 0.66

weighted avg 0.98 0.95 0.96

M30 ANOVA 0 0.22 0.59 0.32

29 20
104 2149

0.59

1 0.99 0.95 0.97

accuracy 0.95

macro avg 0.60 0.77 0.65

weighted avg 0.97 0.95 0.96
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AdaBoost+Borderline 
SMOTE

M31 RFE 0 0.13 0.69 0.22

34 15
226 2027

0.69

1 0.99 0.90 0.94

accuracy 0.90

macro avg 0.56 0.80 0.58

weighted avg 0.97 0.90 0.93

M32 ANOVA 0 0.13 0.69 0.22

34 15
226 2027

0.69

1 0.99 0.90 0.94

accuracy 0.90

macro avg 0.56 0.80 0.58

weighted avg 0.97 0.90 0.93

Decision Tree+ 
BorderlineSMOTE

M33 RFE 0 0.08 0.78 0.15

38 11
424 1829

0.78

1 0.99 0.81 0.89

accuracy 0.81

macro avg 0.54 0.79 0.52

weighted avg 0.97 0.81 0.88

M34 ANOVA 0 0.10 0.84 0.17

41 8
385 1868

0.84

1 1.00 0.83 0.90

accuracy 0.83

macro avg 0.55 0.83 0.54

weighted avg 0.98 0.83 0.89

Random Forest+ 
BorderlineSMOTE

M35 RFE 0 0.23 0.71 0.35

35 14
116 2137

0.71

1 0.99 0.95 0.97

accuracy 0.94

macro avg 0.61 0.83 0.66

weighted avg 0.98 0.94 0.96

M36 ANOVA 0 0.21 0.67 0.32

33 16
125 2128

0.67

1 0.99 0.94 0.97

accuracy 0.94

macro avg 0.60 0.81 0.64

weighted avg 0.98 0.94 0.95

XGBoost+Borderline 
SMOTE

M37 RFE 0 0.21 0.55 0.31

27 22
101 2152

0.55

1 0.99 0.96 0.97

accuracy 0.95

macro avg 0.60 0.75 0.64

weighted avg 0.97 0.95 0.96

M38 ANOVA 0 0.19 0.53 0.28

26 23
109 2144

0.53

1 0.99 0.95 0.97

accuracy 0.94

macro avg 0.59 0.74 0.63

weighted avg 0.97 0.94 0.96

Logistic Regression+ 
BorderlineSMOTE

M39 RFE 0 0.16 0.69 0.26

34 15
175 2078

0.69

1 0.99 0.92 0.96

accuracy 0.92

macro avg 0.58 0.81 0.61

weighted avg 0.98 0.92 0.94

M40 ANOVA 0 0.17 0.80 0.28

39 10
187 2066

0.80

1 1.00 0.92 0.95

accuracy 0.91

macro avg 0.58 0.86 0.62

weighted avg 0.98 0.91 0.94

Notes: The table includes the classification report (precision, recall, and F1-score), confusion matrix, and recall of the minority class. For a detailed explanation of 
the precision, recall, F1-score, accuracy and confusion matrix, please refer to ‘Model results and discussion’ section of the text.
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Table 4. Evaluation of the Performance of the Best Model on Validation (New and Unseen) Dataset

 Feature 
selection 

Algorithm
Classification Report

Confusion Matrix
Recall 

(minority)Precision Recall F1-score

Recursive AdaBoost+ 
ADASYN

0 0.06 0.79 0.11

26 7
413 2701

0.79

1 1.00 0.87 0.93

accuracy 0.87

macro avg 0.53 0.83 0.52

weighted avg 0.99 0.87 0.92

ANOVA AdaBoost+ 
ADASYN

0 0.05 0.88 0.09

29 4
603 2511

0.88

1 1.00 0.81 0.89

accuracy 0.81

macro avg 0.52 0.84 0.49

weighted avg 0.99 0.81 0.88

Notes: The table includes the classification report (precision, recall, and F1-score), confusion matrix, and recall of the minority class. For a detailed explanation 
of the precision, recall, F1-score, accuracy and confusion matrix, please refer to ‘Model results and discussion’ section of the text.

Table 5. Comparison of Our Study with Other Studies[12,14]

Number of 
Samples

Number of 
Minority 
samples

Number 
of desired 
features

ML Algorithms
Feature Selection 

Methods
Sampling 

Techniques
Recall 
Score

Our 
study

10,818 1.82 % of the 
total number 
of samples 

25 logistic regression, Decision 
Tree, Random Forest, 

AdaBoost, and XGBoost

correlation matrix, 
Recursive Feature 
Elimination and 
ANOVA feature 

selection

SMOTE, 
BorderlineSMOTE, 
SVMSMOTE and 

ADASYN

86

[12] 859 - 11 Naive Bayes, Random 
Forest, K-Nearest Neighbor, 

and logistic regression

sequential forward 
selection-based 

wrapper

No sampling 
technique was used

84.52

[14] 1,756 39.86% of 
the total 

number of 
samples

29 a hybrid predictive 
model based on an 

improvedrandom forestand 
SVM

A feature selection 
method was used

SMOTE 99.13

Notes: Given the use of various ML algorithms, feature selection methods, and sampling techniques along with employing of a large, highly imbalanced data 
that reflects the nature of real-world data,  our model’s performance is significantly better than the others. 

approaches for understanding the dynamics of disease 
transmission. These models have been widely used to model 
Hepatitis C infection dynamics[4-6]. While these models are 
powerful for exploring the theoretical aspects of disease 
transmission using mathematical equations, our ML models 
are capable of predicting disease by dynamically learning from 
data and recognizing patterns within it. Fractional calculus 
models are often very complicated because they have complex 
mathematical formulations, which makes them significantly 
challenging to implement in practical clinical settings. Our ML 
models, on the other hand, will provide more straightforward 
and easy-to-use tools for healthcare professionals. Unlike 
fractional calculus models, which may require recalibrating 
the model with new data, ML models dynamically learn and 
update continuously with new datasets. In addition, ML 
models aim to develop sophisticated predictive tools with the 
aim of cutting-edge techniques. This is in contradiction with 
traditional fractional calculus models, which typically focus on 
understanding the theoretical underlying processes of diseases 
rather than optimizing predictions.

To verify the generalization of models, we plotted 
learning curves. Learning curves illustrate the relationship 
between the model's training and validation performance 
metrics (e.g., accuracy or recall) and the number of 
training samples or training iterations. The training curve 
represents the model's performance on the training data, 
while the validation curve shows the model's performance 
on the validation data (a set of data that was not used 
during training). Figure 4A shows the learning curve for 
the AdaBoost model with the ADASYN sampling and RFE 
methods. In the figure, initially, the training and validation 
curves are quite distant from each other, indicating 
overfitting. However, as the number of training examples 
increases, the two curves converge, demonstrating 
good model performance. To further validate our model 
performance on a new dataset, we applied the trained 
model to the NHANES dataset of 2013-2014. This dataset 
comprises 3,147 data points, from which 33 samples have 
positive Hepatitis C tests. Table 4. demonstrates the model 
performance on this dataset. The recall score and number 
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of FN are comparable to those of the test dataset (models 
M11 and M12 in Table 3). These results indicate that our 
model is robust and generalization is strong.

Figures 4B and 4C illustrate the feature importance 
for models M11 and M12. Both models use the AdaBoost 
algorithm in combination with ADASYN sampling. The 
key difference between them is in their feature selection 
methods: Model M11 uses the RFE technique, while Model 
M12 employs the ANOVA feature selection approach. The 
most important features in predicting HPV using the ANOVA 
feature selection approach are AST, age, globulin, and ALT. 
These features are well-known indicators of liver function and 
general health, thus reflecting their importance in modeling 
HCV.  In the case of the RFE method, important features are 
recognized as AST, age, globulin, total bilirubin, and gender. 
The inclusion of total bilirubin and gender implies that these 
features may reveal subtle but meaningful differences in HCV 
presentation across various demographic groups.

The increasing number of desired features may enhance 
the model's performance, however, it also increases the 
degree of model complexity which may limit its usage in 
practice. Hence, limiting the number of the model‘s features 
to four or five key ones maximizes our model’s practicability 
by healthcare professionals in early disease detection. The 
use of limited features in HCV prediction is in agreement 
with previous studies like Ref.[10] and Ref.[14] in which a 
limited number of relevant features were employed.

A

B C

Figure 4. Learning Curves We Plotted. A: Learning curve of our best model (model M11 in Table 3), demonstrating that the 
model performs well. Feature importance based on (B) RFE and (C) ANOVA feature selection. These are the results of AdaBoost 
model with ADASYN sampling method which shows the best performance in this study. AST, age, and globulin are the three most 
important features identified by both feature selection methods.

6 CONCLUSIONS
Our study demonstrates the importance of choosing the 

appropriate sampling method to improve the performance 
of ML models when the dataset is highly imbalanced. 
The results indicate that the ADASYN sampling method 
significantly enhances the models' performance. Among the 
five ML models evaluated, AdaBoost consistently delivered 
the best performance.

The simplicity of our models, requiring only four or five 
features - depending on the feature selection method 
employed - to predict HCV infection is a key strength of this 
study. This eases the use of our models, making it a valuable 
supplementary tool for doctors in the early diagnosis of 
disease, which could contribute to saving human lives. For 
future research, we suggest delving deep into other feature 
selection and sampling methods and trying different ML 
models from those used in the current study. Moreover, 
applying our approach to larger and more diverse datasets 
from other institutions worldwide could help validate our 
model's generalizability across different populations. This 
work could be further extended by introducing additional 
relevant features to the existing ones which may lead to 
further improvement  in model performance.
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Abbreviation List
AC, Acute cholangitis hepatitis
ADASYN, Adaptive Synthetic Sampling
AH, Alcohol-associated hepatitis 
ALP, Alkaline phosphates
ALT, Alanine transaminase
ANOVA, Analysis of Variance
AST, Aspartate amino-transferase
AUC, Area under the curve 
BMI, Body mass index 
EDA, Exploratory Data Analysis 
GGT, Gamma-glutamyl transferase
HBV, Hepatitis B virus 
HCV, Hepatitis C virus 
HHS, United States Department of Health and Human 
Services
LASSO, Least Absolute Shrinkage and Selection Operator 
ML, Machine learning
NHANES, National Health And Nutrition Examination Survey
NCHS, National Center for Health Statistics
RFE, Recursive feature elimination
SMOTE, Synthetic Minority Over-sampling Technique
SVM, Support vector machine 
SVMSMOTE, Support vector machine synthetic minority 
over-sampling technique
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