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Abstract
Objective: This research focuses on economically controlling spacecraft motion to minimize energy 
costs during reorientation. It constructs an optimal control method that considers both control forces and 
rotational kinetic energy, aiming for efficient spatial reorientation.

Methods: Utilizing the quaternion method and Pontryagin's maximum principle, the study devises a re-
stricted control for optimal spacecraft turns. Analytical solutions are derived from differential equation  
relating orientation quaternion and angular velocity, with numerical simulations used for verification.

Results: The study presents a solution to the optimal control synthesis problem for spacecraft reorien-
tation, optimizing for minimal energy costs. Key properties of optimal solutions are formulated analyti-
cally, aiding in determining optimal control algorithm parameters. Mathematical modeling illustrates the 
process and practical feasibility of the designed method for attitude control.

Conclusion: This research provides a comprehensive solution to spacecraft orientation optimal control, 
particularly beneficial for spacecraft equipped with electric-jet engines. The explicit control law improves 
efficiency and economizes spacecraft motion during orbit flight, contributing to smoother, continuous 
functions of time for both control functions and phase variables. The study's relevance lies in addressing 
the cost-effectiveness of spacecraft motion control, with potential for further research on optimal control 
with additional restrictions.

Keywords: spacecraft’s spatial attitude, quaternion, angular velocity, criterion of quality, maximum principle

1 INTRODUCTION
Problem of spacecraft reorientation into given angular position was solved. The solution method and the formalized 
description of spacecraft’s rotational motion kinematics are based on the quaternion models for description of rotational 
motion of solid body[1]. Spatial reorientation is a moving the spacecraft axes from one known attitude into another given 
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angular position in finite time T. Angular attitude of spacecraft’s coordinate system is determined relative to a chosen 
reference basis. We considered the version of spatial turn when inertial coordinate system is reference system as often 
encountered case.

Much of papers have been dedicated to investigating a controlled rotation of solid body and problem of optimal control 
for spacecraft attitude in different statements and using different methods of solving[1-26]. For example, some authors 
propose the synthesis of optimal control based on the method of analytical design of optimal controllers[2], others use the 
concept of inverse problems of dynamics to obtain smooth controls for the implementation of the spatial rotation of the 
spacecraft, when the program trajectory is sought in the class of polynomials of a given degree, the coefficients of which are 
determined by the known values of the phase variables at the boundary points of the trajectory[3]. Special attention was paid 
to the problems of optimal control[2,4-24]. Optimization methods can also be different. In particular, solutions to the problem 
of reorientation of solid body of various configurations, based on the Pontryagin’s maximum principle, were considered 
in papers[9-24]. The time-optimal control is very importantly, therefore this maneuver is popular and interesting[5-12]. Other 
classical criteria for the quality of the control process were used previously (minimum fuel consumption[17], minimum 
energy consumption[12,17], etc.). Kinematic problems of rotation were considered in more detail[13-16]. Dynamic problems of 
optimal control are of particular interest and, at the same time, certain difficulties in solving the boundary value problem 
of a rotation; in some particular cases of control over a fixed time, the boundary two-point rotation problem is solved by 
the method of separation of variables[17]. Special regime of control for spacecraft rotation was examined also[18]. Specific 
features of attitude control for a spacecraft with inertial actuators (in particular, the gyrodins) have been researched 
earlier[25,26]. The patented method can be used in control system of a spacecraft, controlled by the gyrodins (or other inertial 
actuators)[27].

Earlier, planar rotations[5,8], relay controls for a turn[1,5-9,12], or the algorithms without optimization[3] for finding the smooth 
control functions were investigated. It is necessary to select out especially problems of the time-optimal turn[1,5-12], control 
problems for an axi-symmetric rigid body[10-13,18,20-22], and also kinematical problems of optimal turn[13-16]. Here, the dynamic 
problem of optimal control of a turn with the restricted control and the combined criterion of quality reflecting total energy 
costs (energy contribution of the control torques and integral costs of kinetic energy) is considered and solved in analytic 
form.

Analytical solution to an optimal turn problem in a closed form is of great practical interest because such solution allows 
the finished laws of the programmed control and variation of an optimal trajectory of spacecraft’s motion to be applied 
onboard. However, it is extremely difficult to obtain them for bodies (spacecrafts) with an arbitrary dynamic configuration. 
Some solutions (including analytical ones) were obtained for spherical[1,19] and dynamically symmetric bodies[10-13,20-22]. But 
analytical solution to the problem of three-dimensional turn with arbitrary boundary conditions (for angular position of a 
spacecraft) was not found for solid body with arbitrary distribution of mass. We know certain particular cases when general 
problem of a turn is solved[1,12,19]. Consequently, we can use only numerical methods (for approximate solution to this 
problem).

Below, we solve the problem of reorientation with new index of quality and the restricted control. In this article, the adopted 
functional of quality characterizes the energy costs as combination of costs of control resources and rotation energy. Its 
minimization is very important task in practice of spacecraft flight. For the time being, the issues of cost-effectiveness 
remain relevant for spacecraft motion control. A finding and investigating the optimal control of spacecraft reorientation 
from initial angular position into given spatial position (with respect to the chosen combined indicator) is the purpose of our 
research.

Optimal control problems for spacecraft orientation with use of the combined criterions of optimality were investigated 
earlier[21-23]. However, in contrast to the published papers, the quality criterion used by us provides smooth control functions (it 
is firstly) and spacecraft motion with kinetic energy of rotation which is minimum for given time of a turn (it is secondly). 
Additionally, in our problem of optimal reorientation, the restricted control torque acts to a spacecraft for its rotation. Also, 
it should be noted that solution obtained in the presented research can be applied for any type of a spacecraft (but not only 
for spacecrafts with inertial actuators[25,26]), in contrast to the previous researches.

2 MATERIALS AND METHODS
2.1 Formulation of Optimal Control Problem
Spatial rotation of a spacecraft around the center mass is described by the quaternions (Rodrigues-Hamilton parameters). 
Motion of the body-fixed basis E relative to the reference basis I will be given by a quaternion Λ[1] (a body-fixed basis 
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E is formed by the principal central axes of ellipsoid of inertia). Without loss of generality, it is assumed that basis
I is inertial. The angular positions of initial and final attitude of a spacecraft with respect to a reference basis I are
given by the quaternions �in and ��, respectively. A following kinematical Equation (1) holds[1]:

2�� = � ∘ (1)

where  is the absolute angular velocity vector; the symbol ∘ is the sign of multiplication of quaternions[1].

Rotary motion of a spacecraft (as solid body) is described by the following Equations (2)[1]:
�1�� 1 + (�3 − �2)�2�3 = �1

�2�� 2 + �1 − �3 �1�3 = �2 (2)

�3�� 3 + (�2 − �1)�1�2 = �3

where i are angular velocities about main central axes of the spacecraft’s inertia ellipsoid; Ji are the main central
moments of inertia of a spacecraft, Мi are the projections of control torque М on the main central axes of
spacecraft’s inertia ellipsoid. Control of spacecraft motion relative to the center of mass is carried out by changing
a torque M (so-called the controlling torque).

For simplicity, the quaternion  determining current position of a spacecraft is assumed a normalized quaternion,
(|| ||=1). Further, we assume that a region of admissible values of a vector M is similar to spacecraft’s inertia
ellipsoid[9,12]:

�1
2

�1
+

�2
2

�2
+

�3
2

�3
≤ �0

2 (3)

where u0>0 determines the control capabilities of spacecraft’s attitude control system.

In practice, problems are interesting when angular velocity of a spacecraft at initial and final instants of time is
zero. We write the boundary conditions for the dynamical system (1)-(3):

(0)=in , (0)=0 (4)

(Т)=f , (T)=0 (5)

where Т is the time of the end the maneuver. The quaternions in and f satisfy the condition  in=f=1.
We know that the quaternions  and -  correspond to same position of a solid, therefore we only consider the
problems in which fin.

We suppose that angular motion of a spacecraft is governed by attitude system generated the torques about three
main central axes of inertia. Optimum is control that provides minimal value of the following sum

� = �0
0

�
(М1

2/�1 + М2
2/�2 + М3

2/�3)��� +
0

�
(�1�1

2 + �2�2
2 + �3�3

2)��� (6)

where k0>0 is a constant positive coefficient (k00).

The problem of optimal control is formulated in the following statement: a spacecraft must be rotated from the
state Equation (4) into state Equation (5) according to the Equations (1) and (2) under condition Equation (3) so
that the indicator Equation (6) is minimum (time Т is given). Solution М(t) is sought within the class of piecewise
continuous functions of time.

The adopted quality criterion Equation (6) distinguishes the proposed optimization problem from the other
problems (considered earlier) by the form of the functional to be minimized with accounting for constraint
Equation (3). Presence of integral of rotation energy limits energy of rotation Ek during optimal turn. We must
note that the declared rotation maneuver can not be implemented for any values of Λin, Λf and J1, J2, J3, k0, u0
since the time Т is fixed, and control M is bounded by the requirement Equation (3). The problem of optimal
rotation of a spacecraft with the restricted control is still relevant when the quality of control process is
characterized by the index Equation (6).

Notice that optimization of rotations with minimal costs on the base of indicator Equation (6) can be useful for
spacecrafts with attitude system which use electric-jet engines or electric-rocket engines (ERJ), because when
controlled by an ERJ (in particular, ion engines), the first integral in index Equation (6) is proportional to the
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consumed electric power (for ERJ, engine’s thrust is directly proportional to the consumed electric current[28], and
the control torque is proportional to the installation arm of ERJ-engine).

2.2 Method for Solving the Problem of Optimal Rotation of Spacecraft
The described problem Equations (1)-(6) is a dynamic problem of optimal turn of solid body[12], in which Мi are
control functions (� = 1,  3). We solve the formulated problem Equations (1)-(6) using the Pontryagin’s maximum
principle[29]. Quaternion variables are very effective mathematical technique applied successfully in many fields of
physics sciences[30-32] (but not only for research of the controlled motion of solid body); it is the most widely
applied mathematical tool. Also, we applied the mathematical modeling and numerical simulation for verification
and confirming the practical feasibility of a designed mode of spacecraft turn. Solving the systems of differential
equations was carried out by the method of successive approximations (in particular, the sweep method or the
shooting algorithm). Two-point boundary-value problem (a boundary-value problem of a turn) we solve using the
method of iteration; an integrating of equations uses different known numeric methods.

According to the maximum principle, we introduce the conjugate variables i that correspond to the projections of
angular velocity i (i=1,3). Since the criterion of quality Equation (6) does not contain elements of quaternion ,
we use the following variables ri[19], replacing the conjugate functions j, which correspond to components j of
quaternion  (i=1,3, � = 0,  3):

�1 = (�0�1 + �3�2 − �1�0 − �2�3)/2

�2 = (�0�2 + �1�3 − �2�0 − �3�1)/2

�3 = (�0�3 + �2�1 − �3�0 − �1�2)/2

Optimal functions ri and the vector r formed by ri satisfy the equations
��1 = �3�2 − �2�3, ��2 = �1�3 − �3�1

��3 = �2�1 − �1�2, �� = � × � (7)

(the symbol×means the cross product of vectors).

Let us write the Hamilton-Pontryagin function for the problem of optimal control Equations (1)- (6)
H=k0(�1

2 �1+�2
2 �2+�3

2 �3)−(�1�1
2 + �2�2

2 + �3�3
2)+1(М1+(J2J3)23)/J1+

+2(М2+(J3- J1)13)/J2+3(М3+(J1J2)12)/J3+�1�1 + �2�2 + �3�3 (8)

The equations for the conjugate functions  i are obtained from the formulas[29]

�� � =−
��
���

And the adjoint system of equations is
�� 1 = 2�1�1 + �3�2(�1 − �3)/�2 + �2�3(�2 − �1)/�3 − �1

�� 2 = 2�2�2 +
�3�1 �3 − �2

�1
+

�1�3 �2 − �1

�3
− �2 (9)

�� 3 = 2�3�3 + �2�1(�3 − �2)/�1 + �1�2(�1 − �3)/�2 − �3

The Hamiltonian H is compiled without taking into account the condition      =1 because the equality
(0)=1 and (t)=const. The Equations (7) show that the vector r is motionless relative to inertial basis[19]
(also r=const0). The initial in and finish f positions determine concrete solution r(t) of the system Equation
(7). Moreover r(0)  0 (otherwise r1=r2=r3  0 and the further solving the problem makes no sense). Optimal
function r(t) is calculated with use of the quaternion (t)[12]

r=�� cE, and �� = const =in r(0) ����

where �� is the conjugate quaternion relative to the quaternion [1].

Problem of searching the optimal control has been reduced to solving a system of equations of spacecraft’s motion
Equations (1), (2), (7) and (9) under condition that a found control itself is chosen by maximization of
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Hamiltonian Equation (8) under restriction Equation (3). System of Equation (7) that determines a behavior of
vector r relative to body-fixed basis replaces a conjugate system of equations for variables j.

2.3 Application of the Maximum Principle for Determining a Structure of Optimal Control
To find the control function M(t) and optimal vector r, we must know the conditions of maximum for Hamiltonian
H. We assume �� = �� �� and �� = �� �� (i=1,  3). Passing to the new controls ui and auxiliary variables ni,
we can rewrite the function H in the following form

� = � ⋅ � − �0 � 2 + ���� = � � cos� − �0 � 2 + ����

where Hinv does not explicitly depend on control function Mi; u and n are the vectors formed by variables ui and ni;
 is an angle formed by the vectors u and n (the sign “” denotes scalar product of vectors).

The function H is maximal if δ=0. If |u|<u0, then the maximum of Hamiltonian H in an argument u is inside the
interval [0, u0] and coincides with the local maximum. From formula (8) we see that Н is quadratic function of
control vector M, and the local maximum is determined by the necessary conditions of extremum �Н ��� = 0 .
Using these requirements, we calculate optimal values of control functions

Mi=i/(2k0) (10)

The control Equation (10) satisfies condition Equation (3) if �1
2/�1 + �2

2/�2 + �3
2/�3 ≤ 4�0

2�0
2 only.

If �1
2/�1 + �2

2/�2 + �3
2/�3 > 4�0

2�0
2 , then an extremum of the Hamiltonian H is outside the interval 0≤|u|≤u0, i.e.

maximum of function H is achieved when the desired control reaches the boundary |u|=u0, and the vectors u and n
have same direction. Hence, the optimal control is

i/(2k0), if

�1
2/�1 + �2

2/�2 + �3
2/�3 ≤ 4�0

2�0
2

Mi= (11)
�0��

�1
2 �1+�2

2 �2+�3
2 �3

, if

�1
2/�1 + �2

2/�2 + �3
2/�3 > 4�0

2�0
2

Thus, the structure of optimal control is determined. The dependences Equation (11) together with the Equations
(7) and (9) are the necessary conditions of optimality. Problem of designing optimal control consists in solving a
system of equations of rotation Equations (1), (2), (7) and (9) under condition Equation (11) for control torque M.
Solution of the system of equations exists, and such solution is single (unique). The vector r(0) should be such that,
as a result of integrating the Equations (1), (2), (7), (9) and (11) with the initial conditions  (0)= in, for the
trajectory of motion Λ(t) the requirement (Т)=f holds.

After introduce the parameter r0=r(t)=const0, we transfer to a normalized vector p=r/|r| (for simplicity), and
pi=ri/r0, |p|=1. For the vector р and its components pi, we consider the following equations

��=p, �� 1 = �3�2 − �2�3

�� 2 = �1�3 − �3�1, �� 3 = �2�1 − �1�2 (12)

The closed system of Equations (1), (2), (7), (9) and (11) allows one to find the optimal control. Problem of
constructing the optimal control of spacecraft rotation is reduced to solving a system of equations of spacecraft’s
motion Equations (1) and (2), conjugate Equations (9) and (12) with equalities ri=r0pi and presence of the law
Equation (11) for the controlling torques Mi. Taking into account the condition (0)=(Т)=0, optimal solution for
our problem Equations (1)- (6) satisfies the following relations:

i=f(t)pi (13)

Jii=a(t)pi (14)

where a(t), f(t) are the scalar functions of time (a (t)  0 within the entire interval of time t[0, T]).
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Successive substitution of dependences Equation (13) into Equation (9), by taking into account the relations
Equation (14) and ri=r0pi, confirms the validity of the found solution, i.e. the solution Equations (13) and (14) for
the system of differential Equations (1), (9), (11) and (12) is indeed true (the Equation (14) follow directly from
system Equations (1), (11), (12) and (13)). From Equations (7), (9) and (11), we see that the optimal functions a(t),
f(t) satisfy the dependence

�� (�) =2a(t)r0 (15)

Taking into account the Equations (12), (13) and (14), we calculate the left sides and the right sides of Equations
(9). The left sides of Equations (9) is identically equal to the right sides if the functions a(t), f(t) satisfy the
dependence Equation (15). Control functionsMi are proportional the components pi of the vector p.

Mi=m(t)pi (16)

The function f(t) and constant k0u0 determine the scalar function m(t). Optimal function m(t) is:

f(t)/(2k0), if �2(�) �1
2 �1+ �2

2 �2+ �3
2 �3 ≤ 4�0

2�0
2

�0sign�(�)

�1
2 �1+�2

2 �2+�3
2 �3

, if �2(�) �1
2 �1+ �2

2 �2+ �3
2 �3 > 4�0

2�0
2

Optimal motion corresponding to the Equations (12) and (14) has the unique property �1
2 �1+�2

2 �2+�3
2 �3 =

const . To check, the given equality is differentiated in time, taking into account Equations (12) and (14), as a
result of which we make sure that the resulting derivative is equal to zero after substituting �� � according to the
Equation (12), and then calculating i using the expressions Equation (14).

Taking into account the laws Equations (11) and (13) and the features of the function f(t) we have
f(t)/(2k0), if f(t)2k0m0

m0 sign f(t), if f(t)>2k0m0

where m0=u0/С; С = �10
2 �1 + �20

2 �2 + �30
2 �3, рi0=рi(0)

Scalar function m(t) does not overstep the bounds of the range from m0 till m0, therefore Mm0.

2.4 Main Properties and Admissible Versions of Optimal Control
A formulated problem of optimal control Equations (1)–(6) is solved completely. For all type of optimal control

a(0)>0, a(T)<0, and the functions a(t) and m(t) are related by the expressions: a(t)= 0
� �(�)��� , a(0)=0, a(T)=0,

)(tma  , (the connection �� = �(�) is obtained from (1) and (11), (12)). For optimal function f(t), we have the

following differential equation: �� = 2�� = 2�(�) . If  f(t) 2k0m0, then �� = �/�0 ; if  f(t)>2k0m0, then �� =

2�0sign�(�) . Note that f(t) is smooth function of time during the entire period of time t [0, T]. Figure 1

demonstrate the behavior of the functions m(t) and a(t) under optimal control, where t1 and t2 are the times of

occurrence of the equalities f(t)=2k0m0 and f(t)=-2k0m0. Optimal function a(t) are described by the following

dependence:

m0t, if tt1

(�0 + �2 ��� ( (� − �1)/ �0)/ �0 − �1 ��� ( (�1 − �)/ �0)/ �0)/2, (17)

if t1<t<t2, m0(T- t), if tt2

where C1 and C2 are some constants. Accordingly, the function m(t) has the form:
m0 , if tt1

[�1 ��� ( (�1 − �)/ �0) + �2 ��� ( (� − �1)/ �0)]/(2�0), if t1<t<t2 (18)

m(t)=

m(t)=

a(t)=
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−m0 , if tt2

because the function f(t) has the following form �(�) = �1 ��� ( (�1 − �)/ �0) + �2 ��� ( (� − �1)/ �0), during

time interval when f(t)2k0m0.

Figure 1. Typical form of optimal functions m(t) and a(t).

Notice that the values C1 and C2 should satisfy the equalities �1 ��� ( (2�1 − �)/ �0) + �2 ��� ( (� − 2�1)/

�0) =−2k0m0; �1 + �2 = 2�0�0, since the function f(t) is equal f(t1)=2k0m0 at the instant t1, but the function f(t)

will equal f(t2)=−2k0m0 at the instant of time t2. From here we obtain the following relations:

�1 =− �2 ��� ( (� − 2�1)/ �0),

�1 = 2�0�0/(1 − ��� ( (2�1 − �)/ �0)),

�2 = 2�0�0/(1 − ��� ( (� − 2�1)/ �0)),

because a(t2)=a(t1)=m0t1 и t2=T- t1. We easily see that f(T)=- f(0) and f(T/2)=0, �� (�/2) < 0.

The boundary-value problem of the maximum principle is to specify the vector p(0) and the value r0>0, under
which the solution of the system of Equations (1), (2), (9), (11) and (12) with initial conditions (4) and relation
ri=r0pi satisfies the boundary conditions (5).

The presence of the switching points t1, t2 depends on the integral
Q = 0

� �(�)��� (19)

which does not depend on character of changing the function a(t) and it is determined exclusively by the
quaternions  in,  f and the moments of inertia J1, J2, J3[14] (the value Q is calculated simultaneously with the
vector р0).

https://doi.org/10.53964/jmim
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If m0T2<4Q, then solution of the problem (1)- (6) is absent, since ����� = 2 �/�0 is the minimum possible duration
of a turn of solid body with moments of inertia J1, J2, J3 from the position (4) into the position (5) under the
constraint (3)[9].

If m0T2=4Q, then M=const=m0 during the entire interval of control t[0, T] independently from the coefficient
k0.

If �( ��� ( �/ �0) − 1) ≤ 2�0[�( ��� ( �/ �0) + 1) �0/2 − �0( ��� ( �/ �0) − 1)] , then in any time

Mconst, because f(0)2k0m0 in this case, and f(t)2k0m0 within period of time t[0, T]. The restriction (3) is

insignificant for this combination of values Q, k0, m0 and T.

If �( ��� ( �/ �0) − 1) > 2�0[�( ��� ( �/ �0) + 1) �0/2 − �0( ��� ( �/ �0) − 1)], then m(0)=m0 and time

intervals with M  =const are inevitable (they necessarily are present in optimal control). For period when

Mconst, we have the equation �� = �/�0 , and the functions a(t), f(t) are �(�) = �0�1 + (�2 ��� ( (� − �1)/

�0) − �1 ��� ( (�1 − �)/ �0) + �1 − �2)/(2 �0), �(�) = �1 ��� ( (�1 − �)/ �0) + �2 ��� ( (� − �1)/ �0).

The value of the integral (19) is � = �0�1(� − �1) + �0

2 0
T−2t1 (C2 exp ( τ/ k0) − C1 exp ( − τ/ k0) + C1 −�

C2)dτ, �2 =− �1 ��� ( (2�1 − �)/ �0).

The switching point t1 is determined using the following equation

(� − �0�1(� − �1))( ��� ( (� − 2�1)/ �0) − 1)
(� − 2�1)( ��� ( (� − 2�1)/ �0) + 1) �0/2 − �0( ��� ( (� − 2�1)/ �0) − 1)

= 2�0

The value t2=T- t1. The constants С1 and С2, and r0 are calculated using the formulas

�1 =
�0(� − �0(� − �1)�1)

0.5 �0(� − 2�1)( ��� ( (2�1 − �)/ �0) + 1) + �0( ��� ( (2�1 − �)/ �0) − 1)

r0=2m0t1+
�1−�2

�0
(20)

�2 =
�0(�0(� − �1)�1 − �)

0.5 �0(� − 2�1)( ��� ( (� − 2�1)/ �0) + 1) − �0( ��� ( (� − 2�1)/ �0) − 1)

Maximal magnitude of angular momentum Lmax is equal

����+�0�1[�2 ��� ( (�/2−�1)/ �0)−�1 ��� ( (�1−�/2)/ �0)+�1−�2] �0 2���=�0�

Key feature of optimal control is a constancy of proportion between kinetic energy of rotation Ek and the squared

modulus of the angular momentum of a spacecraft.

�� = �2 (�1
2 �1 + �2

2 �2 + �3
2 �3 )/2 ��/ � 2 = (�1

2 �1 + �2
2 �2 + �3

2 �3 )/2 = const , because a2= L 2 (it is

shown from (13)) and �1
2 �1 + �2

2 �2 + �3
2 �3 = const =�10

2 �1 + �20
2 �2 + �30

2 �3 , where р10, р20, р30 are the

components of the vector p0=p(0).
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The Hamiltonian Н does not depend on time in explicit form, therefore Н = const along optimal trajectory within

the entire interval of control t[0, T][29]. At initial instant t=0, we have �(0) = �(0)�0�2 − �0�0
2; at final instant

t=T, we have �(�) =− �(�)�0�2 − �0�0
2 . Whence f(T)=- f(0) and �(0) = (�(0) + �0�0

2)/(�0�). At the instant

of time t=T/2 we have f(T/2)=0 and H(T/2)=LmaxC2(r0- Lmax). At the time t=t1, we have �(�1) = �0
2(�0 − �1

2) +

�0�1�0� =H(t2). During the segments when M=const, the functions a(t), f(t) are:

f(t)=H/(u0C)+k0m0- r0t+m0t2, if tt1;

f(t)=r0(T- t)-m0(T- t)2-H/(u0C)- k0m0, if tt2;

a(t)=m0t, if tt1; and a(t)=m0(T- t), if tt2.

We see that � = �0
2(�0 + �1

2) + (�1 − �2)�0�1�/ �0 , for any time t[0,T]. Accordingly, f(0)=�0(2�0 + �1
2) +

�1(�1 − �2)/ �0.

The conditions C1>0, C2<0 are satisfied for any values Q, k0 and T; hence, r0>0 and a(0)>0, a(T)<0 are ensured.

Thus, in the time interval t1<t<t2 when  f(t) <2k0m0, optimal function a(t) is �(�) = �0�1 + (�2 ��� ( (� − �1)/

�0) − �1 ��� ( (�1 − �)/ �0) + �1 − �2)/(2 �0) If f(t)2k0m0, then a(t)=m0t; if f(t)- 2k0m0, then a(t)= m0(T–

t).

About the function f(t), we can write:
(a) within the segment t<t1 when f(t)>2k0m0, optimal function f(t) is calculated by the expression:

�(�) = �0(2�0 + �1
2 + �2) + (�1 − �)(�1 − �2)/ �0 − 2�0�1�

(b) within the segment t1tt2 when f(t)2k0m0, optimal function f(t) has the form:

�(�) = �1 ��� ( (�1 − �)/ �0) + �2 ��� ( (� − �1)/ �0), m(t)=f(t)/(2k0)

(c) within the segment t>t2 when f(t)<−2k0m0, optimal function f(t) is calculated with use of the formula
�(�) = 2�0�1(� − �) − �0(2�0 + (� − �)2 + �1

2) − (�1 − � + �)(�1 − �2)/ �0

Solution of the optimal turn problem is described by the Equations (12-14); control functions Мi and angular
velocities  i change according to Equations (14) and (16). The vector р0 and integral Q are found after solving
two-point boundary-value problem. The characteristics Q, m0 completely determine the program of spacecraft
rotation. The programmed torque М and the quaternion  are related as follows:

� = �(�)�� ∘in∘р0∘ ���� ∘

moreover m(t) changes according to (18).

Optimal rotation has the property of symmetry (for the functions a (t) and m(t) also), and we have the following

dependences:

�(0) =− �(�) > 0, �(�) ≥ 0, �(� − �) =− �(�), a(T–t)=a(t)

0
�/2 �(�) ��� = Т/2

� �(�) ��� , 0
�/2 �(�)��� = Т/2

� �(�)���

� ∘ �(� − �) ∘ �� =− � ∘ �(�) ∘ �� ,  ~)(~)(  ttT LL ���
�<�/2

�(�) = −���
    �>�/2

�(�) = �(0) , Lmax

=���
0<�<�

�1
2�1

2 + �2
2�2

2 + �3
2�3

2 = �(�/2)
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As we can see in (14), р is the ort of angular momentum L. Optimal functions  i(t),  i(t), рi(t) satisfy the
requirements (13), (14) in which рi(t) is solution of system (12). The expression (16) determine optimal control;
the vectors М and L are collinear at any time t[0, T], direction of angular momentum L is constant in inertial
coordinate system. The control (16) is indeed optimum because it is unique solution to the system (1), (7), (9),
(11).

For unlimited control, optimal solution is simplified:
М=f(t)р/(2k0), �(�) = �1 ��� ( − �/ �0) + �2 ��� ( �/ �0), �1 =− �2 ��� ( �/ �0)

�(�) = �0 [�2 ��� ( �/ �0)−�1 ��� (−�/ �0)+�1−�2] 2, r0=(�1 − �2)/ �0

Where �1 = �0� [�0( ��� (−�/ �0)−1)+� �0( ��� (−�/ �0)+1)/2 ]

�2 = �0 � [�0( ��� ( �/ �0) − 1) − � �0( ��� ( �/ �0) + 1)/2 ]

For control bounded by the requirement (3), optimal solution is М=m(t)р, where m(t)=u0/С, if f(t)>2k0m0;

m(t)=f(t)/(2k0), if f(t)2k0m0; and m(t)=- u0/С, if f(t)<- 2k0m0.

The characteristic Q, and optimal values m0, р0 are determined exclusively by the values и0, in, f and J1, J2, J3,

and the times t1, t2 depend on k0. At the instant of time t=T/2, the control torque М changes its direction to the

opposite one, the modulus |L| is maximum (|L(T/2)|=Lmax).

The desired value t1 is found within the interval t1  [0, t0], where �0 = (� − �2 − 4�/�0)/2 . If we suppose

t1=t0, then it means С1=С2=0 (it follows from (20)) and a=const, f(t)=0, but such functions can not be in optimal

control, since optimal torque M0 in segment t[t1, t2], and optimal function f(t) should change from 2k0m0 to the

level - 2k0m0. Consequently, t1<t0 for optimal motion.

2.5 Special Cases of Optimal Reorientation
Control functions are formed by the laws (16), (18), for which it is necessary to know р1 , р2 , р3 at each current
time t. An analytical solution of system (2), (12), (14) exists only for dynamically symmetric and spherically
symmetric bodies. In the case of a spherically symmetric spacecraft ( �1 = �2 = �3 ), the solution is:
рi(t)=const=рi0=��/ �1

2 + �2
2 + �3

2 , Мi(t)=m(t)рi0,  i(t)=a(t)рi0/Ji, where time functions a(t) and m(t) are specified
by the parameters m0=�0 �1 , Q=2J1arccos 0 and k0 (see Section 2.4); �0, �1, �2, �3 are elements of quaternion
�� = ���� ∘ ��. The trajectory of rotation (t) has analytical form �(�) = ��� ∘ е�0�(�)/(2�1), s(t)= 0

� �(�)��� .

For dynamically symmetric spacecraft (J2=J3), problem of optimal control (1)- (6) can be solved completely also
(the axis OX is considered to be the axis of symmetry for the sake of concreteness). With such a distribution of
masses, р1=const=р10 and spacecraft optimal motion is the simultaneous rotation around the vector р, fixed in the
inertial coordinate system, and around the longitudinal axis OX. The angle  between angular momentum L and
the longitudinal axis is constant, and modulus of angular momentum is proportional to a velocity around the
longitudinal axis. The angular velocities around р and the axis OX change proportionally with a constant
coefficient of proportionality, due to which we have[9,12]

�� = ��� ∘ е���/2 ∘ ��1�/2, � = �10� �2
�1

− 1 (21)

where е1 is the unit vector of the symmetry axis OX; ,  are the angles of spacecraft rotation around the OX axis

and around р (, 0 ≤ � ≤ �). Solution p(t) has analytical form[9,12]:

р1=р10=cos,�2 = �20 ��� � + �30 ��� �, �3 =− �20 ��� � + �30 ��� � (22)
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= �−�1
� 0

� �1(�)���

where pi0=рi(0); J=J2=J3; the longitudinal velocity ω1(t) is determined from (14) given that р1=const=р10. The
values  ,  and pi0 are found by quaternions  in and  f using the Equation (21). Notice, optimal value p0
corresponding to optimal solution can be defined with use of device[33].

In this particular case, the described solution differs from the known paper[12], since all control variables Мi(t) are
the continuous functions of time. Angular velocities  i are calculated by the Equations (14) and (22). Optimal
functions a(t) and m(t) are determined by the programs (17), (18) and depend on the values T, m0, Q, which are
computed definitely by given values  in,  f, и0, k0 and J1, J2, J3. We write the sought optimal controls Mi(t) in
analytical form:

M1=m(t)р10, M2=m(t) 1 − �10
2 ��� ( � + �), M3=m(t) 1 − �10

2 ��� ( � + �),

where � = ������ �20 1−�10
2 ,

if �30 ≥ 0,or � = � − ������ �20 1−�10
2 ,

if �30 < 0 ( �10 ≠ 1); the caseр10=1 means flat rotation around the OX axis, therefore it is not considered.

Optimal trajectory of dynamically symmetric spacecraft  (t) is represented in analytical form �(�) = ��� ∘

е�0�/2 ∘ ���1/2, where � = �2
−1

0
� �(�)��� ; � = �10�(�2 − �1)/�1.

The parameters р0 , m0, Т for dynamically symmetric body are found more simply (calculation of (19) is
simplified also); Q=J2, since � = �2�� , where �� is rotation speed around angular momentum L (we specify 0,
��  0). The values Lmax, G depend on  . For (6) to be minimal value, it is necessary that the angle  be the
minimum possible, for which  (the Equation (21) is supplemented by the requirement 0). We can prove
that solution to system (21) exists for any Λin, Λf and any J1, J2=J3.

For an asymmetric spacecraft (when J1≠J2≠J3), we can solve the system (2), (12), (14) by numeric methods only
(e.g., using a method of successive approximations or iterations methods with consecutive approach to true
solution). One of such methods was described in detail in the known paper[9]. We know that the solution p(0)
which satisfies the conditions Λ(0)=Λin, Λ(Т)=Λf and second equality of (21) for the system of Equations (2), (12)
and (14) does not depend on a type of changing the magnitude of angular momentum[14] (therefore, we take
a=const≠0 in (14) for search of p(0)). The behavior of p(t) and solution of Equation (14) corresponds to rotation
by inertia of solid body when a(t)=const. To compute the desired vector p(0), we must solve the boundary-value
problem Λ(0)=Λin, Λ(Т)=Λf, taking into account the Equations (1) and (2) in which Mi=0. This boundary-value
problem of a turn can be solved by the iteration method (see the method[34] and the system[35]). As a result, angular
velocity vector at initial instant of time  cal, for which a spacecraft rotates with its free motion (M=0) from the
state Λ(0)=Λin, (0)=cal into the state Λ(Т)=Λf, will be found. The vector p0=p(0) relates to cal as follows:

р� 0 =
���� cal

�1
2�1cal

2 + �2
2�2cal

2 + �3
2�3cal

2

Other computation schemes are useful in some specific cases[36].

2.6 Numerical Example and Data of Mathematical Simulation
In this section, we give numerical solution of optimal turn problem with minimal value of (6). For example, we
consider 150° rotation into position that is characterized by the quaternion  f with elements λ0=0.258819;
λ1=0.683013; λ2=0.258819; λ3=0.591505. Direction of body-fixed axes and the axes of inertial basis coincide in
initial state, and (0)=(Т)=0 also. We construct optimal control program for spacecraft’s reorientation from a
state Λ(0) = Λin ,  (0)=0 into a state Λ(T) = Λf ,  (T)=0 within Т=300s. Numerical solution of controlled turn
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problem in formulation (1)–(6) is presented for case when и0=0.044Nkg–1/2 and k0=10s2, and mass-inertial
characteristics of a spacecraft are as follows: J1=4710kgm2, J2=17160 kgm2, J3=18125 kgm2.

To solve the two-point boundary-value problem, we assume that a(t)=const in (14) (and L=const), since a
character of behavior of the function a(t) does not influence on the sought value p0[14]. After solving a boundary-
value problem of a turn from position Λ(0)=Λin into position Λ(Т)=Λf, the calculated vector p0 and (19) were
found p0={0.381804; 0.1941395; 0.9036236}, Q=28907.5Nms2. Accordingly, m0=5Nm. We see that m0T2>4Q,
hence the given turn can be implemented. Also, �( ��� ( �/ �0) − 1) > 2�0[�( ��� ( �/ �0) + 1) �0/2 −
�0( ��� ( �/ �0) − 1)] for k0 and m0, therefore М=m0 at initial and final instants of time, optimal rotation
includes two interval of time when М=const. Optimal process has three interval of changing the control torque
М: fist interval is intensive spin-up of a spacecraft (when m(t)=const=m0), second phase is control with
exponential change of m(t) (the function m(t) decreases from m(t)=m0 to m(t)=–m0), and finally, intense braking at
the end of a turn (during this stage m(t)=const=–m0). The switching points are t1=17.576s and t2=282.424s,
constant r0=178.92Nms. The angular momentum reaches the maximum value Lmax=103.69Nms at the time t=150s.

Results of numeric simulation of optimal turn and graphical illustration of spacecraft motion are presented on
Figures 2-4. The graphs of changing the angular velocities are shown in Figure 2 (angular velocities  i given in
degree/s). The velocity  1 is of constant sign, and the nature of its change repeats the behavior of the angular
momentum modulus (in contrast to 2 and 3) due to the OX is the longitudinal axis of the spacecraft. Figure 3
shows variation of quaternion elements for Λ(t) during slew maneuver (λ0(t), λ1(t), λ2(t), λ3(t) reflect the current
attitude of a spacecraft). Finally, Figure 4 demonstrates a dynamics of variables p1(t), p2(t), p3(t) which form unit
vector p. We see that variation of the projection p1 is a lot less than variation of the projections p2 and p3. The
variables pi,  i and λj are smooth functions of time (unlike control functions Mi). Optimal function m(t) is
presented in Figure 5 for the considered turn (m(t) given in Nm). Figure 6 illustrates the change in energy of
rotation during optimal turn of a spacecraft (energy Еk given in J). Rotation energy during maneuver less than
Emax=0.42J.

Figure 2. Changing the angular velocities of a spacecraft during optimal turn.

Figure 3. Elements of quaternion (t) during spatial turn.
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Figure 4. The functions p1(t), p2(t), p3(t) during optimal maneuver.

Figure 5. Optimal function m(t) for model turn.

Figure 6. The change in energy of rotation Еk in a turn process.

3 RESULTS AND DISCUSSION
The optimal control problem for a turn of solid body (in particular, spacecraft) from initial position into the
prescribed position is investigated in detail. For optimization, a chosen indicator of quality combines the
contribution of the control forces (in sense of energy costs) expended for implementing the maneuver of a turn
and the integral of the kinetic energy of rotation in a given proportion. We found key properties of optimal turn
and a type of trajectory that corresponds to the criterion (6). It is proved that proportion between the squared
modulus of angular momentum and kinetic energy of spacecraft rotation is constant during the maneuver.

Quaternion models and the Pontryagin’s maximum principle were used for solving the proposed problem of
control. We have written out the Hamilton-Pontryagin function and the conjugate system of equations for the
formulated optimization problem. Also, analytical expressions for optimal control functions were obtained. The
construction of optimal control is determined on the base of the necessary conditions of optimality which were
formed in analytic form. Relations for determination of spatial motion of a spacecraft were given; the uniqueness
of optimal solution is confirmed.
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Obtained control method differs from all known decisions. Main difference is use of new functional of quality.
The presence of integral of the kinetic energy reduces maximal rotation energy. The coefficient k0, specifying the
proportion between costs of control resources and integral of rotation energy, determines how gentle the change in
the angular momentum modulus will be during the optimal turn. Other principal difference consists that presence
of segments of rotation with the constant modulus of control torque is not excluded due to narrow-mindedness of
control during optimal turn. In our work, all possible variants of optimal control are determined and described in
detail, the condition (criterion) allowing to specify a type of optimal control basing on the given coefficient k0 in
the minimized functional and domain of permissible control. Depending on value k0, one of two versions of
control can be optimum: (a) rotation with changing modulus of control torque during entire maneuver; (b) the
control with segments of rotation with constant maximum modulus of control torque entitled as an acceleration of
rotation in a beginning of a turn, and braking at the end of a turn. We have given analytical equation which
establishes a relation between duration of segments of rotation with constant modulus of control torque and the
coefficient k0 in the minimized index, and the maximum possible magnitude of control torque m0. The formulas
for calculating a maximal energy of rotation and maximum modulus of angular momentum are written in
analytical form. The procedure for implementing the optimal control mode is described.

The obtained results differ from solution in the paper[12], where relay control was found in contrast to continuous
control that is optimal in our problem. Computational expressions for calculating the basic characteristics of slew
maneuver are presented. Example and the results of numerical simulation for spacecraft rotation under optimal
control are given, demonstrating the behavior of motion parameters. In particular case, for a dynamically
symmetric spacecraft, complete solution of the problem of a spatial turn is presented: a system of equations is
obtained in analytical form, from which the solution of the boundary-value problem is directly found and the
necessary constants of the control law are calculated (we can use the known device[33]).

In recent years, due to the increase in the duration of the active existence of the spacecrafts (more than 10-15 years)
and an applying of precise attitude control systems, interest in ERJ engines has increased significantly[37]. The
indisputable advantages of ERJ engines are the possibility of a small value of a single thrust pulse and accurate
pulse dosing, which ensures especially precise orientation. Due to the unimaginably high values of the specific
pulse (up to 6000s), a wide use of ERJ engines in spacecraft systems (including for orienting a spacecraft) is one
of the leading and natural trends in space activities in the world. At the present time, many foreign spacecrafts use
ion thrusters for attitude control (for example, XIPS-25 ion thrusters developed by Boeing Space Systems were
used to control spacecraft's orientation in the US space program). In this case, the consumed electrical energy very
close is estimated by the value proportional to the first term in the index (6); the second term in (6) limits the
kinetic energy of rotation, making it as little as possible for the given turning time under the limited control torque,
which is also highly desirable in space flight. Taking into account the need for an all-round reduction in the power
consumption of the ERJ engine for controlling the spacecraft, together with a desired decreasing of rotation
energy, a choice of the minimized functional in the form (6) becomes clear.

The issues of cost-effectiveness of spacecraft’s motion control remain relevant; thus, the problem solved in this
article is important in practice. The proposed solution is different from all known ones; during the optimal turn of
a spacecraft, both the control functions and the phase variables are smooth continuous functions of time.

4 CONCLUSION
Optimal control program of spacecraft’s reorientation with minimal costs of energy has been found; it is
demonstrated that the control when angular momentum is parallel to a controlling torque within the entire interval
of spatial turn is optimum. The issues of profitability and economical control of spacecraft rotations is relevant in
present time, therefore the studied problem is very important. The solved problem differs from other problems
with a combined functional in index form, in the presence of restrictions on the control and does not concern to an
axi-symmetric body[21-23]. The obtained results demonstrate that the designed control method of spacecraft’s three-
dimensional reorientation is feasible in practice.
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