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Abstract
Objective: The purpose of this study is to substantiate the method and means of forming estimates of 
the physical parameters of the state of agrocenoses, including the main agricultural crops and weeds. 
These physical parameters include biomass parameters, the estimates of which will be used to address the 
technological issues of future agriculture management.

Methods: With consideration of the differences in the physical dimension of information, a method for 
integrating ground-based measurements and earth remote sensing data is proposed by the joint use of 
a mathematical model of the dynamics of agrocenoses biomass state parameters and a model for the 
relationship between the calculated state parameters and remote sensing data. Spatial coordinates are 
the main feature of the mathematical models used, and the task of assessment is divided into the task of 
forming average field estimates of the parameters of the state of agrocenoses and their spatial correction 
for elementary sections of the field using a linear corrector.

Results: An algorithm for estimating the parameters of the state of agrocenosis according to remote 
sensing data was developed, which was implemented in a specialized computer program. Original sources 
of information were employed to ensure sufficient accuracy and reliability of the assessment. Ground 
measurements were used to identify and adapt mathematical models, including data from stationary remote 
sensing devices, and a mobile remote sensing tool was used to estimate the parameters of the biomass of 
agrocenoses over the entire area of the field.

Conclusion: The proposed method and the algorithm for its implementation ensure the stability of 
the estimation process with an error in assessing the biomass of agrocenoses being ±10%. The current 
research has been carried out over the past 10 years in the experimental fields of the Menkovsky branch of 
the Agrophysical Institute, within the framework of the thematic plan of the Agrophysical Institute in the 
scientific direction of “Precision Farming”.
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1 INTRODUCTION
The transition to digitalization and intellectualization of agriculture is primarily associated with the automation of 

agricultural technology management processes, which requires reliable information on the parameters of the state of crops 
and the degree of their contamination by weeds. Moreover, these parameters are the physical and chemical parameters of 
agrocenoses and the soil environment. Estimates of these parameters allow management to formulate control decisions and 
develop control instructions in automatic control systems.

The main problem with the assessment contains cultivated and weeded plants, and classical methods of assessment and 
pattern recognition are thus necessitated. Earth remote sensing (ERS) facilities are adopted to address these issues, in which 
various options for indices and optical criteria are frequently used. Specifically, the normalized difference vegetation index 
is mostly used. Its concept o was presented by Kriegler et al.[1], and was first described by Rouse et al.[2] This index has been 
transformed into various variants such as the relative vegetation index, first described by Jordan[3], differential growth index, 
first reported by Lillesand and Kiefer[4], and infrared growth index, first described Crippen[5]. In the information sense, the 
indices are scalar quantities obtained by combining the reflection parameters of individual spectral ranges[6-10]. Therefore, the 
use of indices is mainly associated with rough expert assessments of situations in the fields or with pattern recognition with 
simple dual alternatives, such as plant diseases, stresses, land classification, crop recognition, detection of phenological phases 
of crop development, and a generalized assessment of the state of crops of the “normal-abnormal” type. Nevertheless, such 
simple methods fail to solve the control problems in precision farming systems, To achieve the management goal, reliable 
quantitative estimates of the physical parameters of the state of crops and soil environment that determine the management 
goals are required.

In previous studies[11-14], an approach has been developed based on the classical estimation of the parameters of the state of 
crops according to remote sensing data and is considered an indirect measurement of the parameters of the state of the object 
of assessment. This approach has been tested on various forage crops whose biomass is a raw material for the preparation of 
forages. The present study aims to develop an approach to assess the parameters of the state of agrocenoses, which include 
cultivated plants with a more complex morphological structure and weeds of various species.

2 MATERIALS AND METHODS
The assessment of the parameters of the state of the agrocenoses is to construct in real-time estimates of such physical 

parameters as the density (amount of biomass per unit area) of a cultivated plant, including its commercial part (marketable 
yield), the density of the biomass of weed plants, as well as its composition of the total biomass by dry and wet mass. The 
estimates of these parameters are used for agricultural technology management. The classical approach to the estimation 
problem is to clarify a priori information about the estimated parameters by indirect measurements (remote sensing data in 
the current study), which is a source of a posteriori information about the parameters of the agrocenoses state.

All a priori information about the estimated parameters of the agrocenoses is contained in the mathematical model 
that reflects the dependence of these parameters on the main influencing factors. Herein, spring wheat was considered a 
cultivated plant.

Since the sowing of spring wheat has two different patterns, before heading and after its onset, two mathematical models 
were used in the estimation problem[11,12].

The detailed form of the model of biomass parameters of agrocenoses with spring wheat before the heading phase shows 
the following form[14]:

where the parameters of the state of the biomass of the agrocenoses are: x1m (y,h) is the density of the biomass of 

(1)
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the cultivated plant on an elementary plot with spatial coordinates (y,h), hwt·ha-1; x2m(y,h) is the density of the biomass 
of weeds, hwt·ha-1; x3m(y,h) is the density of the wet mass of the agrocenoses, hwt·ha-1; external disturbances are: f1-
average daily air temperature, C; f2-average daily radiation level, W·(m2·h.)-1; f3-average daily precipitation intensity, mm; 
parameters of the chemical state of the soil: vN-nitrogen content in the soil, kg·ha-1; vK-potassium content in soil, kg·ha-1; vP 
is the phosphorus content in the soil, kg·ha-1; vMg is the content of magnesium in the soil, kg·ha-1; v5-moisture content in the 
soil, mm; g is the dose of agrocenoses treatment with a universal herbicide, kg·ha-1;

-modeling errors, which are random processes with zero means and variances 

y, h-spatial coordinates, m; t∈(T1m,T2m)-daily time, vegetation interval from germination to heading phase.

Vector-matrix symbolic form of the model (1)

where: Am, Bm, Dm, Cm are the matrices of model parameters, dynamic, transfer of control of chemical parameters of the 
soil, transfer of herbicide control, transfer of external disturbances, and the form of matrices corresponds to the expanded 
form of the model (1), Xm,V, F, Sm are the vectors of state parameters, nutrient content in the soil, climatic parameters, 
and random errors in modeling the model (1). The expanded form of the model of the parameters of the biomass of the 
agrocenoses with spring wheat after the beginning of earing has the following form[14]:

where the parameters of the state of the biomass of the agrocenoses are: x1u(y,h) is the density of the biomass of a 
cultivated plant (spring wheat) on an elementary plot with spatial coordinates (y,h), hwt·ha-1; x2u(y,h) is the density of 
biomass of weeds, hwt·ha-1; x3u(y,h) is the density of the mass of ears of spring wheat (yield), hwt·ha-1; x4u(y,h) is the density 
of the raw mass of the agrocenoses, hwt·ha-1;

-modeling errors, which are random processes with zero means and variances 

y,h-spatial coordinates, m; -daily time, vegetation interval from the heading phase to the maturation phase.

Vector-matrix symbolic form of the model

where: Au, Bu, Du, Cu are the matrices of model parameters, dynamic, transfer of control of chemical parameters of the 
soil, transfer of herbicide control, transfer of external disturbances, the form of matrices corresponds to the expanded form 
of the model (3), Xu, V, F(t), Su are the vectors of state parameters, nutrient content in the soil, climatic parameters, and 

(2)

(3)

(4)
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random errors in modeling the model (4).

A priori information on the parameters of the state of the biomass of the agrocenoses, formed by models (2), (4), should 
be corrected according to real ERS data, to which optical measurement models (ERS models) are introduced.

The model of optical measurements of the state of the biomass of spring wheat agrocenoses in the period preceding 
heading has the following form[14]:

symbolic vector-matrix form of the model:

where:

is the vector of reflection parameters for the spatial coordinate in the green range z1 (500-565nm), red z2 (625-680nm), 
(700-740nm) and near-IR range z3 (740-950nm)

-matrix of model parameters,

-vector-function, where the arguments are the parameters of the state of the agrocenoses; x1m, x2m, x3m8 are the random 
measurement errors with zero means and variances e2 1m, e2 2m, e2 3m.

Optical measurement model (ERS model) of the biomass state of agrocenosis with spring wheat for the period from the 
beginning of heading to crop ripening in an expanded scalar by-component form

symbolic vector-matrix form of the model

(5)

(6)

(7)

(8)
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where:

-vector of integrated reflection parameters in green (500-565nm)-(z1m), in 1st red (625-700nm)-(z2m), in 2nd red 
(700-750nm)-(z2m), in the near IR (750-950nm)-(z3m),

-matrix of model parameters,

-vector-function, where the arguments are the parameters of the agrocenoses state.

The main feature of the presented vector-matrix mathematical models (1)-(8) is that the components of the vectors are 
not scalar or vector quantities but two-dimensional distributions of the corresponding biomass parameters in dynamic 
state models and reflection parameters in ERS models. Such models can be classified as a variety of 3D models, which 
significantly complicates the modeling and estimation algorithms and requires spatial cycles, where the number of variables 
depends on the method of dividing the total surface of the field into elementary sections. With an area of an elementary plot 
of 2m2, the number of computational evaluation cycles will reach 5000 for a field area of 1ha.

With a total area of the field under sowing of 500ha, the total number of elementary plots and algorithm cycles will 
be 2.5×106 units. Therefore, for large areas of crops (more than 1000ha), it is advisable to use approximate modeling and 
estimation schemes. In the estimation schemes, the parameters of the sowing state averaged over the field are estimated, 
followed by the correction of the estimates for the field surface using a corrective model without the indicators of the 
phenological state of the crop

where: K(t) is a matrix of spatial correctors, and its parameters are estimated by forming an array of variations in the 
reflection parameters of remote sensing ΔZ(t,y,h) and estimates of biomass parameters for 30-40 elementary sections for 
a given time t. Such points in time are only those in which technological operations are performed, while spatial corrector 
matrices are not established for the rest of the time points.

To form estimates of biomass parameters in the selected elementary areas, the following local estimation algorithm was 
used and built on the basis of the models (2), (4)[14,15]

where: R(t) is the matrices of estimation errors, with the dimension corresponding to the vectors of the biomass 
parameters of the models (2), (4).

The estimation algorithm (10) implements the classical optimal filtering method[15]. The estimates generated by the 
algorithm (10) are used to form controls for the state parameters of agrocenoses. The components of this control are a 
sequence of fertilizer application rates, irrigation rates, and herbicide application rates. The formation of such departments 
is an independent problem that requires additional attention.

The reliability of estimates of parameters of agrocenoses generated by algorithm (10) depends on the accuracy of the 
mathematical models used (2), (4), (6), (8). It is achieved by the quality of their identification based on real data. This 

(9)

(10)
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is availableonly when creating a special information-
measuring complex, as shown in Figure 1.

It includes means of ground-based measurements 
and remote sensing of the ERS. The means of ground 
measurements include devices for measuring the parameters 
of the crop sowing biomass, weed biomass, and physical 
and chemical parameters of the soil environment. These 
funds were located on test sites, which were located at the 
edge of the field for easy maintenance. The number of such 
sites was 15-20 units, and the area of each site was 10-
20m2. They were sown with the same crop as the main field 
with different doses of fertilizers, different irrigation rates, 
and varying degrees of weediness. Ground measurements 
include meteorological parameters meters located at the 
nearest weather station, which usually serves several fields.

ERS means include a stationary mast with a mult- 
ispectral optical sounding device located above the test 
sites. In addition to the stationary device, the complex 
also includes a mobile remote sensing device based on an 
unmanned aerial vehicle (UAV). Ground-based measuring 
instruments and stationary remote sensing means were 
operated on a daily time scale and are used to identify 
mathematical models (2), (4), (6), (8). The mobile remote 
sensing tool functioned only on the days of technological 
operations and was used to form estimates of the parameters 
of agrocenoses using algorithms (9), (10).

To obtain experimental data, a UAV “Geoscan 401” 
equipped with a multispectral optical camera MikoSens 
RedH MX was used as a mobile remote sensing tool. 
Reflection parameters in the range from 430nm to 950nm 
were recorded using a multispectral camera over the entire 
area of the field with agrocenosis under spring wheat. A 
portable hyperspectrometer PSR+”Srectrora diameter” 
(USA), which is equipped with a built-in GPS system 
receiver, was used as a stationary remote sensing tool. The 
width of the optical range of the hyperspectrometer was 
360-1350nm. A sampling of plant and soil biomass was 
carried out manually, followed by sample analysis in the 
analytical laboratory of the Agrophysical Institute. The 
institute’s stationary weather station was used to collect data 
on climatic conditions.

All measurements were processed by the verification 
algorithm and recorded in the database and were introduced 
into the estimation algorithm (10). The received information 
is not subjected to any additional filtering, since the 
estimation algorithm (10) is an optimal filter, and random 
errors of meters and models are excluded[15]. The parameters 
of mathematical models (2), (4), (6), (8) are estimated by 
an independent identification algorithm operating on the 
principle of parameter control[15]. This algorithm minimizes 
the root-mean-square deviation of the vector of model state 
parameters from the real values of these parameters.

3 RESULTS
Figure 2 shows a fragment of remote sensing data of an 

experimental field with the sowing of spring wheat at the 
stage of milky-wax ripeness (green color). Test sites are 
highlighted herein, and soil is collected daily, from which 
information on the parameters of the state of agriculture 
is formed according to models (2), (4). While sampling 
by stationary ERS means, the daily average parameters of 
reflection over the test sites in the above spectral ranges 
were recorded. The obtained daily data were used to 
identify models (2), (4), (6), (8). The starting point for 
assessing the state of agrocenoses is the quality of models 
(6), (8). Graphs of the processes of identification of these 
models are presented in Figure 3.

On both graphs, the numbers of elementary plots 
(trial plots) were plotted along the horizontal axis. The 
experimental values of biomass indicators of agrocenoses 
were obtained, including crops of spring wheat and weeds. 
Reflection parameters (spectral brightness coefficients) 
were plotted along the vertical axis along the used spectral 
channels. For the period preceding the earing of spring 
wheat, these are green range (500-565nm); red (625-740nm) 
and near-IR (740-900nm). For the period between the 
phases of earing and full maturity, these are the green range 
(500-565nm), 1st red (625-700nm), 2nd red (700-750nm) 
and near-IR range (750-950nm). Thus, the geometric 
points on the graphs indicate the experimental values of 
the reflection parameters, and the solid lines reflect the 
calculated values of the reflection parameters obtained 
using models (6), (8).

As can be seen from the obtained identification results, 
both models show sufficient accuracy to solve the problem 
of estimating the parameters of agrocenoses using real 
remote sensing data. Modeling errors in models are 
maintained within ±10% tolerance. The model solutions 
uniformly cover the range of possible values of the 
reflection parameters and do not intersect with each other, 
which indicates the information of the spectral channels 
used.

Figure 4A shows the results of assessing the parameters 
of agrocenoses in the time interval preceding the 
phenophase of earing of spring wheat sowing.

Along the horizontal axis, the time points in days of the 
considered growing season of the agrocenoses were plotted, 
and along the vertical axis, the geometric points represented 
the field-average experimental values of the parameters of 
the biomass of the agrocenoses, and the solid lines represent 
their estimates obtained from the remote sensing data. As 
can be seen from the graphs, the assessment process was 
stable, with its error within the tolerance of ±10%, which 
is adequate to address the issues in the management of the 
state of the agrocenoses.
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Figure 1. Functional diagram of the information-measuring complex for evaluating the parameters and managing the 
state of the agrocenoses.

Figure 2. Image of an experimental field with sowing of spring wheat at the stage of milky-wax ripeness. Menkovsky 
branch of the Agrophysical Institute.

An analysis of the experimental data on the parameters 
of the agrocenosis state and the results of the identification 
of the mathematical model (6) showed that with the same 
type of model, it has different parameter values at the 
intervals between phenophases, requiring the time interval 
from the beginning of heading to maturation into several 
interphase periods. The process of assessing the parameters 
of agrocenoses for these periods is shown in Figure 4B-4D.

As for the period preceding the phenophase of earing of 
spring wheat, the process of estimating the parameters of the 
agrocenoses biomass averaged over the field area was stable, 
and the estimation error remained a tolerance of ±10%.

Estimates of the field-averaged estimates of the biomass 
parameters of the main crop and weeds are available 
for the management decisions on fertilization rates and 
herbicide application rates over the entire field area. The 
differentiation of these technological operations required the 
assessment of the agrocenoses biomass parameters for all 
elementary areas. Moreover, the estimates for all elementary 
sections of the field were corrected using correctors (9). In 
contrast to the field-average parameter estimates, which are 
continuously constructed, correctors (9) were constructed 
only at the moments of the execution of the technological 
operation. Figure 5A-C show the graphs for constructing 
spatial correctors for 20 test sites for selected points in time 
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Figure 3. The process of identification of the ERS model. A: The process of identifying the ERS model for the agrocenosis in 
the time interval preceding the earing of spring wheat; B: The process of identification of the ERS model for the agrocenosis at the 
time interval between the phenophases of earing and full ripening of spring wheat.

A

B

at different interphase periods of the growing season of 
sowing spring wheat.

These results indicate a high similarity among these 
processes because the same elementary sections were used 
to construct the correctors. However, they significantly 
differed in the amplitudes of settings, which is associated 
with the processes of increasing biomass, leading to 
alterations in the parameters of spatial correctors. Figure 5D 
shows the graphs of the spatial correction of the parameters 
of the biomass of the agrocenoses for the 71st day of the 
growing season of spring wheat. Similarly, according to 
remote sensing data, estimates of the parameters of the 
agrocenoses were formed for the entire remaining area 

of the field for other points in time. These estimates are 
available to calculate local doses of mineral fertilizers and 
doses of weed treatments with herbicides.

4 DISCUSSION
To better understand the proposed methodology for 

assessing the parameters of agrocenoses, which includes the 
main crop (spring wheat) and weeds (specific species are 
not specified here), a general algorithm for the functioning 
of the information-measuring complex for assessment was 
presented in the current study (Figure 1).

Stage 0. Before beginning, all known parameters 
of mathematical models were introduced, which were 
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Figure 4. The process of evaluating the parameters of agrocenosis. A: The process of assessing the parameters of 
agrocenosis in the time interval preceding the phenophase of earing of spring wheat; B: The process of assessing the parameters 
of agrocenosis in the time interval between the phenophase of heading and flowering of spring wheat; C: The process of 
assessing the parameters of agrocenosis in the time interval between the phenophase of flowering and milky-wax ripeness of 
spring wheat; D: The process of evaluating the parameters of agrocenosis in the time interval between the phenophases of milky-
wax ripeness and full ripening of spring wheat.

D

A

B
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C

D

Figure 5. The process of identification of the spatial corrector. A: The process of identification of the spatial corrector for 
the 52nd growing season of sowing spring wheat; B: The process of identification of the spatial corrector for the 61st day of the 
growing season of sowing spring wheat; C: The process of identification of the spatial corrector for the 73rd growing season of 
sowing spring wheat; D: The process of spatial correction of biomass parameter estimates for the 73rd day of growing season of 
sowing spring wheat.

obtained from the results of previous growing periods.

Stage 1. At the beginning of the tillering (germination) 
phase, samples of plants of the main crop and weeds were 
collected daily in real-time from trial plots or a field site. 
While sampling by stationary remote sensing means, 
the daily average parameters of the reflection of the 
agrocenoses on the test sites were formed. The obtained 
data were used to refine the parameters of mathematical 
models, which were carried out during the first 7 days.

Stage 2. From the 8th day, the mode of estimating the 
field-average biomass parameters according to the algorithm 
(10) was used for the entire growing season preceding the 
heading phenophase. If the technical operations of fertilizer 
application and herbicide treatment were performed during 

this period, mobile sensing tools were used to generate 
ERS data. In addition to the estimation algorithm (10), an 
algorithm for spatial correction of the agrocenoses state 
parameters was used accordingly (9).

Stage 3. From the onset of the earing phase, to a more 
complex morphological structure, and to the full maturity of 
the culture, the field-average parameters of the agrocenoses 
biomass were estimated according to the algorithm (9) 
and the stationary ERS tool, and during technological 
operations, the spatial correction of estimates was carried 
out according to the data of the mobile remote sensing 
device in accordance with formula (9).

An analysis of such studies, given in references[16-22], 
showed that the current models of crop yield losses from 
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the impact of weeds, and models of weed competition with 
main crops have received the maximum development. 
According to such models, algorithms and decision support 
programs for weed control have been developed. However, 
the methodology for estimating the state parameters of 
agrocenoses containing the main crop and weeds based on 
remote sensing data has not yet been developed. Dynamic 
models of agrocenoses state parameters and remote sensing 
models, on the basis of which estimation algorithms are 
developed, are currently unavailable. The absence of 
such real-time evaluation tools significantly reduces the 
adequacy and reliability of decisions made on weed control.

5 CONCLUSION
The assessment of the parameters of the state of the 

biomass of agrocenoses, including the main crops and 
weeds, was carried out by combining ground-based 
measurements and ERS data. The problem of integration 
is related to the fact that ground-based measurements are 
point (local), and remote sensing data are distributed over 
the area of the field. To address this issue, a mathematical 
model of the dynamics of the parameters of the state of 
the agrocenoses biomass was used. This model has spatial 
coordinates and is a source of a priori information about 
the parameters of the agrocenoses biomass state with 
consideration of all influencing factors. To clarify this 
information based on remote sensing data, a mathematical 
model of the relationship between the estimated state 
parameters and remote sensing data was introduced. This 
allows the combination of the parameters and data into 
a single evaluation algorithm that forms estimates of the 
parameters of the agrocenoses biomass state with sufficient 
accuracy by coordinating the physical dimensions of the 
models. Furthermore, ground measurements, including 
stationary remote sensing devices, were performed on 
selected 15-30 test sites with a similar composition of 
agrocenoses, with an area of 10-20m2 and different doses 
of fertilizers, irrigation rates and varying degrees of weed 
infestation. Ground-based measurements were used to 
estimate the parameters of mathematical models, and 
remote sensing data from mobile remote sensing devices 
were used to form estimates of the biomass parameters 
of agrocenoses over the entire field area. To simplify the 
evaluation procedure, it was implemented in two stages. 
The first stage involved the formulation of the estimates 
of agrocenoses biomass parameters averaged over the 
area, and the second stage involved the correction of 
elementary plots using a linear spatial corrector. Therefore, 
the identification of the species composition of weeds and 
their share in the total biomass is of great significance. 
Moreover, the problem of model and evaluation algorithms 
establishment for other crops and agrocenoses is relevant.

Acknowledgements
Not applicable.

Conflicts of Interest
The author declared no conflict of interest.

Author Contribution
Mikhailenko IM solely contributed to this manuscript.

Abbreviation List
ERS, Earth remote sensing
UAV, Unmanned aerial vehicle

References
[1]	 Kriegler FJ, Malila WA, Nalepka RF et al. Preprocessing 

transformations and their effects on multispectral recognition: 
Proceedings of the Sixth International Symposium on Remote 
Sensing of Environment, Ann Arbor, USA, 13-16 October 
1969. Ann Arbor, MI: University of Michigan; 1969.

[2]	 Rouse JW, Haas RH, Schell JA et al. Monitoring vegetation 
systems in the Great Plains with ERTS. In: Freden SC, 
Mercanti EP, Becker MA ed. Third ERTS Symposium, 
Scientific and Technical Information Office, National 
Aeronautics and Space Administration; Washington, USA, 
1973; 309-317.

[3]	 Jordan CF. Derivation of leaf-area index from quality of 
light on the forest floor. Ecology, 1969; 50: 663-666. DOI: 
10.2307/1936256

[4]	 Lillesand TM, Kiefer RW. Remote sensing and image 
interpretation, 2nd edition. John Wiley and Sons: USA, 1987.

[5]	 Crippen RE. Calculating the vegetation index faster. 
Remote Sens Environ, 1990; 34: 71-73. DOI: 10.1016/0034-
4257(90)90085-Z

[6]	 Antonov VN, Sweet LA. Monitoring of the state of crops 
and forecasting the yield of spring wheat according to remote 
sensing data. Geom, 2009; 4: 50-53.

[7]	 Bartalev SA, Lupyan EA, Neishtadt IA et al. Classification 
of certain types of agricultural crops in the southern regions 
of Russia according to MODIS satellite data. Issledov Zem iz 
kosm, 2006; 3: 68-75.

[8]	 Lawrence RL, Ripple WJ. Comparisons among vegetation 
indices and bandwise regression in a highly disturbed, 
heterogeneous landscape: Mount St. Helens, Washington. 
Remote Sens Environ, 1998; 64: 91-102. DOI: 10.1016/S0034-
4257(97)00171-5

[9]	 Ponzoni FJ, Borges da Silva C, Benfica dos Santos S et al. 
Local illumination influence on vegetation indices and plant 
area index (PAI) relationships. Rem Sens, 2014; 6: 6266-6282. 
DOI: 10.3390/rs6076266

[10]	 Sims DA, Gamon JA. Relationships between leaf pigment 
content and spectral reflectance across a wide range of 
species, leaf structures and developmental stages. Remote 
Sens Environ, 2002; 81: 337-354. DOI: 10.1016/S0034-
4257(02)00010-X

[11]	 Mikhaylenko IM, Timoshin VN, Malygin VD. Decision-
making on the date of fodder harvesting based on remote 
sensing data of the earth and mathematically tuned models. 
Decis Mak, 2018; 15: 169-182. DOI: 10.21046/2070-7401-

https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1936256
https://www.sciencedirect.com/science/article/abs/pii/003442579090085Z
https://www.sciencedirect.com/science/article/abs/pii/003442579090085Z
https://www.sciencedirect.com/science/article/abs/pii/S0034425797001715
https://www.sciencedirect.com/science/article/abs/pii/S0034425797001715
https://www.mdpi.com/2072-4292/6/7/6266
https://www.sciencedirect.com/science/article/abs/pii/S003442570200010X
https://www.sciencedirect.com/science/article/abs/pii/S003442570200010X
http://jr.rse.cosmos.ru/article.aspx?id=1763&lang=eng


Innovation Forever Publishing Group J Mod Agric Biotechnol 2022; 1(3): 1713/13

https://doi.org/10.53964/jmab.2022017
2018-15-1-169-182

[12]	 Mikhailenko IM, Timoshin VN. Assessment of the chemical 
state of the soil medium according to remote sensing of the 
earth. Earth Space, 2018; 18: 125-134.

[13]	 Mikhailenko IM, Timoshin VN. Development of a 
methodology for assessing the parameters of the state of 
crops and soil environment for crops according to remote 
sensing of the Earth. IOP Conference Series: Earth and 
Environmental Science. IOP Publishing, 2020; 548: 052027. 
DOI: 10.1088/1755-1315/548/5/052027

[14]	 Mikhailenko IM, Timoshin VN, Weller VE. Estimation of the 
parameters of the state of the biomass of spring wheat crops 
[in Russian]. Bull Russ Agr Sci, 2021; 1: 2-6. DOI: 10.30850/
vrsn/2021/1/4-8

[15]	 Kazakov IE. Methods for optimizing stochastic systems, 
Moscow, Russia, 1987. 

[16]	 Bagavathiannan MV, Beckie HJ, Chantre GR et al. Simulation 
models on the ecology and management of arable weeds: 
structure, quantitative insights, and applications. Agron, 2020; 
10: 1611. DOI: 10.3390/agronomy10101611

[17]	 Cousens R. An empirical model relating crop yield to weed 
and crop density and a statistical comparison with other 

models. J Agr Sci, 1985; 105: 513-521. DOI: 10.1017/
S0021859600059396

[18]	 Christensen S. Crop weed competition and herbicide 
performance in cereal species and varieties. Weed Res, 1994; 
34: 29-36. DOI: 10.1111/j.1365-3180.1994.tb01970.x

[19]	 Kropff MJ, Spitters CJT. A simple model of crop loss by weed 
competition from early observations on relative leaf area of 
the weeds. Weed Res, 1991; 3: 97-105. DOI: 10.1111/j.1365-
3180.1991.tb01748.x

[20]	 Berti A, Bravin F, Zanin G. Application of decision-sup- 
port software for postemergence weed control. Weed Sci,  
2003; 51: 618-627. DOI: 10.1614/0043-1745(2003)051 
[0618:AODSFP]2.0.CO;2

[21]	 Neuho D, Schulz D, Köpke U. Potential of decision support 
systems for organic crop production: WECOF-DSS, a tool 
for weed control in winter wheat: In Proceedings of the 
International Scientific Conference on Organic Agriculture, 
Adelaide, Australia, 21-23 September 2005.

[22]	 Benjamin LR, Milne AE, Parsons DJ et al. Using stochastic 
dynamic programming to support weed management decisions 
over a rotation. Weed Res, 2009; 49: 207-216. DOI: 10.1111/
j.1365-3180.2008.00678.x

http://jr.rse.cosmos.ru/article.aspx?id=1763&lang=eng
https://iopscience.iop.org/article/10.1088/1755-1315/548/5/052027/meta
https://www.vestnik-rsn.ru/vrsn/article/view/794
https://www.vestnik-rsn.ru/vrsn/article/view/794
https://www.mdpi.com/2073-4395/10/10/1611
https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/an-empirical-model-relating-crop-yield-to-weed-and-crop-density-and-a-statistical-comparison-with-other-models/4865A8FF88869023B6493B76960A5F42
https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/an-empirical-model-relating-crop-yield-to-weed-and-crop-density-and-a-statistical-comparison-with-other-models/4865A8FF88869023B6493B76960A5F42
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3180.1994.tb01970.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3180.1991.tb01748.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3180.1991.tb01748.x
https://www.cambridge.org/core/journals/weed-science/article/abs/application-of-decisionsupport-software-for-postemergence-weed-control/5CC64433C4CDF11176CEE46D48396F04
https://www.cambridge.org/core/journals/weed-science/article/abs/application-of-decisionsupport-software-for-postemergence-weed-control/5CC64433C4CDF11176CEE46D48396F04
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3180.2008.00678.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3180.2008.00678.x

