
 ISSN  2788-810X (Online)

Journal of 
Modern Agriculture and Biotechnology

Open Access

https://www.innovationforever.com

Copyright © 2023 The Author(s). This open-access article is licensed under a Creative Commons Attribution 4.0 International License 
(https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, sharing, adaptation, distribution, and reproduction in any 
medium, provided the original work is properly cited.

J Mod Agric Biotechnol 2023; 2(2): 12

1/18

https://doi.org/10.53964/jmab.2023012

Review

Recent Advances in Bio-management of Plant Diseases 

Danish Nigar1, Asfa Rizvi2, Bilal Ahmed3*, Mohammad Saghir Khan1*, Ees Ahmad4

1Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, 
Aligarh, Uttar Pradesh, India

2Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India

3Department of Agricultural and Biological Engineering, College of Agriculture, Purdue University, West 
Lafayette, Indiana, USA

4National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of 
Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, India

*Correspondence to: Mohammad Saghir Khan, PhD, Professor, Department of Agricultural Microbiology, 
Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India; Email: 
khanms17@rediffmail.com; 
Bilal Ahmed, PhD, Post Doc Research Associate, Department of Agricultural and Biological Engineering, 
College of Agriculture, Purdue University, 610 Purdue Mall, West Lafayette 47907, USA; Email: bilalahmed.
amu@gmail.com

Received: February 2, 2023 Revised: March 7, 2023 Accepted: March 27, 2023 Published: May 23, 2023

Abstract
Constantly increasing global human populations has put agricultural sector under astounding 
pressure to fulfil food demands growing worldwide. In order to optimize crop production, usage of 
agrochemicals in intensive agronomic practices have increased alarmingly. The negative impact of 
excessive application of agrichemicals on food production, human health and environment raises 
concerns about its long-term field application. Exploration of alternative means of crop protection and 
optimization, therefore, warrants inexpensive and environmentally friendly strategy. Use of microbes 
or microbes-based products among many options is one such important strategy that provides 
solution to the problems. In this regard, many biocontrol measures have been practiced over time, 
and some of them have shown exceptional potential and success. Realizing the importance of soil 
microbiota in crop optimization while reducing the chemical inputs, significance of plant beneficial 
bacteria in the amelioration of biotic stresses especially the phytopathogens employing microbiome 
management, microbial volatilomes, and nano-bioformulations is discussed. The relationship between 
the agriculturally useful soil microbiomes and food crops enables the development of microbes-based 
antagonist strategies for low-cost production of food crops in worrying open field environment.

Keywords: biotic stress, micro-biocontrol agents, nematophagous microbiome, nano-bioformulations, 
microbial volatilomes, hydrolytic enzymes
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1 INTRODUCTION
The relationship between human populations and crop 

production has been very old but complex as well. World 
population is growing exponentially and therefore, food 
insecurity is increasing at greater pace worldwide[1]. 
Global human populations are likely to reach 
approximately eight billion in 2022 which will further 
increase gradually to 10.4 billion in 2100 (UN 2022). 
Due to this huge population size, there is tremendous 
pressure on agriculture sector to optimize crop 
production and to fulfil human food demands. The global 
food mandates that agriculture production must increase 
by 70% to circumvent human food hunger[2]. Despite 
all efforts, production of food crops faces massive 
challenges from biological/microbiological enemies 
which cause huge losses to yield and quality of eatable 
crops worldwide. According to some estimates, loss in 
crop production in India due to insect-pests and diseases 
is 30-35%[3]. Among phytopathogens, fungi cause 80%, 
viruses and phytoplasmas cause 9% and bacteria cause 
more than 7% yield losses[4]. Scientists are trying hard to 
find ways as to how to control such losses. In this regard, 
various methods like, use of agrichemicals, antibiotics, 
and host resistance[5,6] are applied to prevent the crop 
damage due to phytopathogens. These methods have been 
proved as a short-term option in disease management 
strategies. Moreover, the inappropriate application of 
agrochemicals leads to unintended toxic impacts on 
soil-plant environment, soil/rhizosphere microbiome[7] 

and human health via food chain[8]. The resilience of 
insect-pests or other microbial phytopathogens toward 
expensive toxic chemicals is yet another major concern. 
So, considering all factors, there is urgent need to find 
an eco-friendly and cost-effective long-term solution to 
solve the phytopathogens problem and to enhance crop 
production. Evidence reveals that among all applied 
methods, use of biological formulations to manage plant 
diseases, often called “biological control” has attracted 
greater attention as a sustainable and inexpensive disease 
management strategy[9]. 

Indeed, different kinds of biological control measures 
are available but among all options, application of 
rhizobacteria that occupy about 7-15% of rhizosphere, 
is most preferred and widely used method[10]. The 
biological control agents (BCAs) employ different 
mechanisms such as competition, lytic enzymes and 
iron chelating compounds “siderophore”, antagonism 
and induced systemic resistance (ISR) to suppress the 
severity and extent of diseases[11]. Attempts have been 
made herein to provide a broader and comprehensive 
view of new and emerging biocontrol strategies that 
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focuses explicitly on microbial volatilome, plant 
microbiome engineering, and bio-nano-formulations for 
controlling phytopathogens.

2 CURRENT GLOBAL PERSPECTIVE OF CROP 
DISEASES

The loss in food crops due to insect-pests is increasing 
globally. Each year, plant diseases severely damage 
the crops resulting in losses in world economy which 
accounts for about $220 billion while pests alone 
cause $70 billion monetary losses. The plant diseases 
therefore, contribute significantly to crop yield losses 
which puts additional financial pressure on the agrarian 
community[12]. Like other countries, Indian economy 
which depends heavily on agriculture sector also suffers 
hugely from the menace of phytopathogens[13]. Among 
major food crops, the production of cereals especially 
maize, rice, and wheat[14] has been reported to decline 
by 30-70% due to huge biotic stresses[15], this is indeed 
an alarming situation regarding world food security. 
Savary et al.[16] projected yield loss at a global level for 
wheat, rice, maize, potatoes, and soybeans at 22, 30, 
23, 17 and 21%, respectively. The maximum losses 
in the food production could be due to food-deficit 
areas where the population is growing rapidly and due 
to the emergence or re-emergence of similar or new 
plant diseases in the same agro-ecological regions. Put 
together, there is a pressing need for increasing crop 
production while minimizing/reducing chemical inputs 
in agricultural practices. Such ameliorating techniques 
employed for the management of crop diseases should 
however, be ecologically sustainable, highly reliable, 
greatly profitable, socially acceptable, and biologically/
agronomically/medically and environmentally safe[17].

3 BIOCONTROL: CONCEPTS AND IMPLICATIONS 
IN DISEASE MANAGEMENT

Plant diseases caused generally by the phytopathogens 
belonging to different groups such as fungi, oomycetes, 
bacteria, nematodes, and viruses, primarily invade the 
plant root systems and gradually affects the other parts 
of the host plants[18]. The destruction of disease-causing 
ability of phytopathogens at any stage of infected plants 
therefore, becomes imminent. This can be achieved by 
employing one or simultaneous options like, biological 
approaches, chemical measures, plant genetic strategies 
or soil disinfection (fumigation, soil solarization, 
and anaerobic soil disinfestation) strategies[19]. Of 
all options, use of chemicals especially pesticides 
have been found rapid and effective. Ironically, the 
application of chemicals in the management of plant 
diseases pollute soil through drift or runoff, leaching 
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and food via consumption of contaminated foods 
causing phytotoxicity to plants and human health[20]. 
Agrichemicals are also exorbitantly expensive and when 
applied injudiciously to control plant diseases, disrupt 
soil fertility, and crop productivity[21,22]. Considering 
this, interest in biological control via microbial agents 
has grown as an alternative to pesticides[23]. In order to 
limit the usage of synthetic agents, biological control 
measures involving microorganisms is considered 
an important component of integrated management 
strategies[23].

The term "biological control" or "biocontrol" refers 
to the use of living organisms to compete for resources 
or space, parasitise other organisms, or fight against 
certain plant diseases or pests[5]. Due to differences in 
understanding among scientists, the term biocontrol 
has been defined differently. For example, the use of 
biological agents, such as viruses, to combat pestilential 
organisms, such as pathogens, pests, and weeds, for 
a variety of objectives to benefit humans has been 
defined as biocontrol by some workers[24]. The beneficial 
organisms that are used to cope with the diseases 
are termed as BCAs by others. With the molecular 
advancement in biological control strategies, the term 
has been expanded further to include specialised 
metabolites, which can be effective for treating diseases 
and are often isolated from interactions or plant extracts. 
They are frequently referred to as "biopesticides" or 
"bioprotectants" and comprise compounds having 
signalling, antimicrobial or attractant properties 
(such as pheromones)[25]. Some of the widely used 
BCAs belongs to genera, Bacillus, Pseudomonas, 
Agrobacterium, Burkholderia, Azotobacter, Frankia, 
Azospirillum, Bradyrhizobium, Rhizobium, Serratia and 
Thiobacillus[26]. Apart from disease suppression, they 
also enhance plant growth by different direct/indirect 
mechanisms, biological nitrogen fixation, solubilizing 
essential elements such as P, Zn and K, secretion of iron 
chelating compounds (siderophores), phytohormones 
excretion, production of antibiotics, volatile organic 
compounds (VOCs), exopolysaccharide, hydrogen 
cyanide (HCN) and lytic enzymes[27]. Yan et al.[28] in a 
recent study, isolated Bacillus velezensis YYC strain 
from tomato rhizosphere and observed enhancement 
in tomato growth following inoculation by suppressing 
Ralstonia solanacearum through secondary metabolites 
such as plantazolicin, fengycin, difficidin and bacilysin 
and fengycin. Among all secondary metabolites, 
fengycin promoted plant disease resistance and reduced 
the growth of Sclerotinia sclerotiorum. Overall, BCAs 
are considered important in agriculture because they 
are inexpensive, environment friendly, simple to 
convey, easy to use, long shelf life and generates no 
toxic residues[29]. Also, BCAs can be used along with 
biofertilizers without contaminating soil as well as 

without causing any damage to the human health[30]. 
Considering all, there is need to scale up the BCAs 
production for aggressive application in real field 
situations for optimizing the crop yields[31,32].

4 PLANT MICROBIOME: AN EMERGING CON-
CEPT OF DISEASE SUPPRESSION

Plant microbiome, also known as the phyto- 
microbiome, is relatively a new concept that plays 
significant roles in disease suppression leading to 
crop optimization. The term microbiome has been 
defined as “a characteristic microbial community 
occupying a reasonably well-defined habitat which has 
distinct physio-chemical properties”. In simple terms, 
microbiome refers to both composition and functions 
of microbes thriving well in any given environment. 
Broadly, plant microbiome, can be divided into the 
rhizosphere, phyllosphere and endosphere microbiomes, 
all of which harbour antagonists that may inhibit various 
phytopathogens in a plant system[33]. Overall, the plant 
microbiome benefits plants through different mechanisms 
such as synthesis of a specialised antagonistic metabolite 
(rhizobitoxine) that causes resistance against severe 
infections, suppression of soil-borne disease, antibiosis, 
competition for nutrients in the rhizosphere and hormone 
regulation[34]. Plant microbiome is affected by many 
factors related to plant itself for example, genotype, 
species, organs and plant health and abiotic factors like, 
land use and climate, agriculture practices like crop 
rotation, fertilizers and microbial applications[35].

Rhizosphere microbiome, also considered as the 
“second genome of plants”[36], consists of bacteria, 
protozoa, fungi, archaea, oomycetes, algae, nematodes, 
and viruses[37,38]. Some of these microbial populations 
exhibit antagonistic effects, while others benefit plants 
by other mechanisms[39]. Like rhizosphere microbiome, 
phyllosphere microbiome consists of mostly non-
pathogenic microbial community whose interaction with 
plants can be positive, negative, neutral, or commensal[40]. 
According to some estimates, the total aerial surface 
of phyllosphere is about 6.4×108km2 worldwide that 
provides a common and vital place for terrestrial 
microbiota including bacterial cells[41]. Phyllosphere 
microbiome aid plants in maintaining health by reducing 
the overgrowth of phytopathogens. For instance, 
Brevibacillus brevis, isolated from Chinese cabbage 
phyllosphere, when used as a biocontrol agent against 
Botrytis cinerea produced the antibiotics gramicidin S 
and another cyclic antibiotic, non-ribosomal decapeptide, 
and some major component of tyrothricin[42]. In addition, 
phyllosphere microbiome enhances plant productivity 
and health by influencing seed weight, apical growth, 
blooming, and fruit development, as well as eliminating 
pollutants[43]. Phyllosphere microbial populations, 
such as Microbacterium, Stenotrophomonas, and 
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Methylobacterium have been found to improve the 
growth and nutritional quality of edible crops by 
producing natural growth regulators (such as IAA) and 
fixing di-molecular atmospheric N[44]. The importance 
of plant associated microbiome in phytopathogen 
suppression and consequently crop optimization is 
discussed in the following section. 

4.1 Microbial Biocontrol Agents: A Conventional 
Biocontrol Approach 
4.1.1 Bacterial Biocontrol Agents

Soil contains a diverse group of microbial populations 
which may be deleterious or beneficial to the plants. 
Among beneficial microorganisms, plant growth-
promoting rhizobacteria (PGPR) or plant beneficial 
bacteria (PBB), firstly described by Kloepper and co-
workers were isolated from the rhizosphere which after 
seed inoculation, quickly colonized plant roots and 
enhanced crop yields[45]. Also, any soil has the capability 
to prevent the establishment of diseases in host plants, 
even in the presence of a pathogen with a substantial 
inoculum density[46]. However, the abundance, diversity, 
and composition of PGPR/PBB depends largely on 
plant species and soil properties[47]. Despite this, the 
rhizosphere is considered a hotspot for interactions 
between plants and soil inhabiting heterogenous 
microbial populations and offer several advantages 
to mutualistic and symbiotic microorganisms, for 
example, PGP bacteria, archaea, mycorrhizal fungi, 
endophytic fungi, and other groups of organisms[48]. 
The scientific evidence suggests that PBB have been/
being used in agriculture as potential biocontrol agents 
in place of agro-chemicals[49]. Some of the notable PBB 
commonly applied as bacterial antagonists belongs 
to genera Alcaligenes, Azospirillum, Arthrobacter, 
Acinetobacter, Bradyrhizobium, Bacillus, Burkholderia, 
Enterobacter, Erwinia, Flavobacterium, Pseudomonas, 
Rhizobium, Frankia, Azoarcus, Exiguobacterium, 
Paenibacillus, and Pantoea[26,50,51]. These bacterial 
BCAs mitigate the phytopathogens populations both 
directly and/or indirectly[52] as presented in Figure 1. 
In order to inhibit the phytopathogens directly, PBB 
synthesize secondary metabolites, organic compounds, 
antimicrobial compounds, toxins and various hydrolytic 
enzymes like beta-xylosidase, chitinase, catalase, pectin 
methylesterase, β-1,3-glucanase etc. (Table 1). Of these, 
production of enzymes is however, one of the key 
mechanisms evolved within microbial populations that 
disintegrate the glycosidic linkages of pathogen cell wall 
leading consequently to the death of target pathogens[5].

The antagonists  a lso inhibi t  the growth of 
phytopathogens indirectly by other mechanisms, 
hyperbiotrophy, ISR and competition. They also promote 
the growth of plants through effector and elicitor 
molecules released from the BCAs without killing the 

targeted pathogens[60]. Effectors are substances that 
are secreted by or linked to an organism that change 
the physiology, composition, or function of another 
organisms. Effectors are pathogen specific compounds 
that can alter the function and structural constituents 
of host cells to facilitate infection and/or elicit immune 
reactions allowing access to nutrients, proliferation, 
and growth[61]. A very few studies however suggests 
that effectors/elicitors may aid in uplifting the BCAs' 
capacity to manage plant diseases. For example, some 
species of Pseudomonas synthesize and excrete different 
elicitors such as lipopolysaccharides, phenazines 
and siderophores (pyochelin and pseudobactin) that 
efficiently stimulates the defence responses in host 
plants whereas growth and ISR were induced by 
2,4-diacetylphloroglucinol and phosphogluconate 
dehydratase. The antibiotic compounds produced by 
Pseudomonas may have superior effectiveness when 
they are excreted in the rhizosphere because ISR may be 
triggered in plants prior to pathogen attack. As a result, 
they protect host plants from the damaging impact of 
pathogens and enhances overall growth of infected 
plants[62].

ISR is other beneficial trait of plant associated 
microbiomes that are used to suppress pathogens 
present either in soil or aboveground. The purpose 
and pathways underpinning ISR triggered by different 
beneficial biocontrol agents such as Bacillus spp., 
and Pseudomomas spp. etc. in containment of plant 
diseases is, however, poorly researched even though 
they can suppress numerous crop diseases[63]. Thus, 
systemic acquired resistance (SAR) and ISR both cause 
systemic resistance in plants and offer long-lasting 
defence against different phytopathogens. Among 
phytocompounds, salicylic acid (SA) is a necessary 
signal molecule for SAR, whereas ethylene and jasmonic 
acid (JA) acts as ISR signal molecules[64]. For instance, 
the seed inoculation of B. pumilus INR7 was found 
effective against the bacterial spot disease of pepper 
caused by Xanthomonas axonopodis pv. Vesicatoria[65]. 
PBB also manage biotic stresses indirectly through 
competition which occur among microbes for nutrients, 
oxygen, and appropriate niches both at root surface 
and in rhizosphere regions. The root exudates or the 
nutritional photosynthates released from different plant 
genotypes attracts PBB and favours their colonisation 
on appropriate plant surfaces. Rhizosphere microbiome, 
however, have a competitive advantage over plant 
pathogens due to their superior nutrient absorption and 
metabolic capabilities[66].

4.1.2 Fungal Biocontrol Agents
Majority of plant growth-promoting fungi are 

considered one of the safest methods for ISR and growth 
promotion of crops due to their ability to activate the 
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Figure 1. A mechanistic model explaining the plant disease suppression adopted by plant beneficial microbiome 
(Adapted from Khan et al.[53])

Table 1. Hydrolytic Enzymes Associated with Disease Suppression Produced by Bacterial Biological 
Control Agents 

Antagonists Biocontrol 
Agents

Target Phytopathogens Disease 
Caused by 
Phytopathogens

Enzymes 
Involved

Mechanisms of 
Destruction

References

Pseudomonas spp. Bacterial Ralstonia solanacearum Bacterial wilt of 
tomato

Lipase
Amylase
Protease

Cell wall 
degradation

[54]

Bacillus subtilis Bacterial R.  solanacearum Bacterial wilt of 
potato

Protease Hydrolyze proteins 
and peptides

[55]

Pseudomonas 
fluorescens

Bacterial Fusarium oxysporum f.sp.
cumini

Cumin wilt Chitinase,
β-1, 3 
Glucanase, and 
Protease

Inhibits mycelial 
growth,
cell wall 
degradation

[56]

Bacillus velezensis Bacterial Coniella vitis Grape white rot Cellulase, 
Protease, 
Amylase and 
Lipase

Inhibits mycelial 
growth and spore 
germination

[57]

Serratia sp. 
Enterobacter sp. 

Bacterial F.  oxysporum f.sp. ciceris Chickpea wilt 
caused

Amylase, 
Protease, 
Cellulase, 
Chitinase

Cell wall 
degradation

[58]

Pseudomonas 
aeruginosa 

Bacterial A. alternata,
R. solani,
X. euvesicatoria
C. michiganensis
subsp. michianensis, P. 
infestans,
P. colocasiae,
and B. cinerea

Black spot of 
vegetables,
Root rot and 
damping off 
vegetables

Proteases and 
Lipases

Destruct cell 
membrane and cell 
wall

[59]
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plant immune system against pathogenic attack[67]. 
As a BCA, fungi are preferred due to - (i) a very high 
reproductive rate, (ii) a quick generation time, and 
(iii) they are target specific. Also, they can survive 
by switching from parasitism to saprotrophism in the 
absence of the host, thus preserving the sustainability of 
the environment[68]. Among fungi, Trichoderma, a genus 
with 25 BCAs have been used largely as a potential 
candidate to suppress a range of fungal phytopathogens. 
In addition to Trichoderma, other fungal genera such as 
Alternaria, Aspergillus, Candida, Fusarium, Penicillium, 
Pichia, Pythium, Talaromyces, and Verticillium have also 
been found as promising fungal biocontrol bioagents 
(FBCAs)[68]. The fungi adopt different mechanisms 
including secretion of hydrolytic enzymes (Table 2) to 
suppress the pathogenicity of the diseases. Furthermore, 
FBCAs activate host defence responses by producing 
pathogen-associated molecular patterns (PAMPs) or 
microbe-associated molecular patterns (MAMPs). These 
receptors can easily be sensed by the plants and in return 
induce PAMP/MAMP-triggered immunity to plants, 
antibiosis, hyperparasitism, competition and production 
of secondary metabolites[69]. Hyperparasitism is a fungal 
phenomenon exhibited by many antagonists wherein 
hyperparasites penetrate and kill cells of bacterial 
pathogens as well as the mycelium, spores, and dormant 
fungal pathogens[70].

Overall, the mycoparasitism includes different stages: 
(i) close contact with the pathogens, (ii) mutual/specific 
recognition and interaction between the pathogen and 
antagonists, (iii) secretion of lytic enzymes by the 
antagonists, dissolution of cell wall and penetration 
inside the host, and (iv) proliferation of the antagonists 
inside the host, and exit to the exterior environment[71]. 
In this context, mycoparasites such as species of 
Trichoderma have traditionally been considered as 
necrotrophic hyperparasite and fast colonizer of the 
spermosphere (seed zone) and rhizosphere (root zone). 
Following colonization and successful establishment, 
release of various hydrolytic enzymes such as chitinases, 
proteases, glucanases and other secondary metabolites, 
like, polyketides, non-ribosomal peptides, terpenoids 
and pyrones have been reported to suppress the fungal 
pathogen diseases and hence relieving plants from biotic 
stresses[72]. It has now become possible to enhance 
fungal strains and introduce fungal genes into the host 
plants using biotechnologies, genetic modification, and 
DNA recombination[68]. Employing these techniques, 
the gene encoding for trichodermin (tri5-trichodiene 
synthase) was cloned into T. brevicompactum Tb41tri5 
which increased the production of trichodermin with 
greater antifungal efficacy against Aspergillus fumigatus 
and Fusarium spp.[73]. This and other developments in 
biological approaches for disease management warrants 
further use of genome editing technology (such as 

CRISPR/Cas9)[74].  
4.1.3 Fungal and Bacterial BCAs Against Plant Parasitic 
Nematodes: An Overview

Plant-parasitic nematodes (PPNs) among soil 
dwelling nematodes pose a serious global challenge to 
food crops. The annual global economic losses due to 
PPNs has been reported as USD 173 billion[79]. When 
food crops are attacked by PPNs, no specific symptoms 
appear on plants and hence the damages are quite 
often erroneously confused with abiotic stresses. This 
mis concept, allows PPN to proliferate and increase 
in density beyond threshold limit in the field. Some 
of the agronomically destructive nematodes are root-
knot nematodes (Meloidogyne spp.), cyst nematodes 
(Globodera spp. and Heterodera spp.), root-lesion 
nematodes (Pratylenchus spp.), the burrowing nematode 
(Radopholus similis) and the stem and bulb nematode 
(Ditylenchus dipsaci)[80,81]. So, considering the nematode 
threats, chemical control with synthetic nematicides has 
been attempted to offset PPN populations under real field 
conditions. The broad-spectrum activity, environmental 
pollution, emergence of resistance among PPNs and lack 
of proper regulatory and legislative guidelines regarding 
use of synthetic chemicals to contain and maintain PPNs 
within limit warrants alternatives strategies[82]. In this 
regard, BCAs especially nematophagous fungi (NF) 
and nematophagous bacteria (NB) offers a promising 
alternative to expensive chemical measures. In this 
section, the role of some fungal and bacterial BCAs in 
the management of PPNs are highlighted.  

Plant beneficial microbiome inhabiting soil/
rhizosphere or colonizing and penetrating endophytically 
plant surfaces (endophytes/spermophytes) also adopts 
different strategies to protect plants from the damaging 
impact of PPNs[83,84]. Generally, such nematophagous 
microbes (NMs) including fungal (Table 3) and bacterial 
BCAs (Table 4) target various life stages/processes 
including both motile and sedentary growth stages 
of PPNs and eventually kill them. Broadly, the NF 
controls the PPNs through bionematicides by parasitism, 
secretion of lytic enzymes and toxins and induce defence 
and resistance mechanisms in plants against PPNs[85-

87]. Essentially, the NF traps (nematode-trapping fungi) 
and prevent PPNs from escaping through-(i) specialized 
structures, such as constrictor rings that capture 
nematodes in their mycelium (ii) three-dimensional 
hyphae networks and (iii) adhesive spores[88,89]. For 
example, the opportunistic saprotrophic fungi attack 
non-motile stages, like eggs, cysts, and Meloidogyne 
females[90]. On the other hand, the endoparasitic fungi 
do not produce specialized structures but infect PPNs 
by spores (conidia or zoospores). Such spores produced 
for example by Harposporium spp. are either ingested 
or adheres onto the cuticle of PPNs and later the whole 
NF content is injected into the nematode as reported in 
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Table 2. Some Examples of Hydrolytic Enzymes Associated with Disease Suppression Secreted by 
Fungal Biological Control Agents

Antagonists Target 
Phytopathogens

Disease Caused by 
Phytopathogens

Enzymes 
Involved

Mechanisms of 
Destruction

References

Trichoderma harzianum sensu 
lato

Bipolaris sorokiniana Wheat spot blotch Chitinase Decompose cell 
wall chitin

[75]

Trichoderma asperellum, F. oxysporum, F. 
fujikuroi,
F. tricinctu,
F. cantenulatum

Fusarium wilt of 
banana

Chitinase 
and β-1,3, 
Glucanase

Degradation of 
chitin and
cell wall

[76]

Cladosporium omanense Pythium 
aphanidermatum

Cucumber and radish 
damping-off disease

Cellulase, 
β-1,3-
Glucanases

Cellular leakage 
mycelium and 
inhibited oospore 
production.

[77]

Trichoderma species F.  solani and
R.  solani

Root rot of pea and 
bean

Chitinase, 
Peroxidase, 
and 
Polyphenol 
oxidase

Hydrolysis of cell 
wall

[78]

Table 3. Some Examples of Potential Fungal BCAs Against Plant-parasitic Nematodes 

Antagonists Major PPN Nematode Species Host Plants Major Findings References

Pochonia 
chlamydosporia

Root-knot 
nematodes

Meloidogyne incognita Tomato and
Cucumber

Reduced infection by 32-43% and 
female fecundity by 14.7-27.6%, 
induced the expression of salicylic 
acid (SA) pathway and upregulated 
jasmonate signalling pathway

[98]

Purpureocillium 
lilacinum 

Tomato Namaticidal effect on second stage 
juvenile's survival and egg hatching 
of nematode, reduced nematode 
populations, number of galls and egg 
masses in plant roots 

[99]

Arthrobotrys 
oligospora (MRDS 
300)

Tomato Reduced the number of females, galls 
and nematodes in different developing 
stages

[100]

Pochonia 
chlamydosporia 
var. chlamydosporia

Pistachio Reduced reproduction parameters; 
Number of galls were significantly 
reduced

[101]

Pochonia 
chlamydosporia

Cyst 
nematodes

 Globodera pallida Potato Integrative characterization offers 
novel perspectives on the biology and 
biocontrol potential of P. chlamydosporia 

[102]

Hirsutella 
minnesotensis

Heterodera glycines Soybean Microscopic examinations 
revealed soybean root surface 
colonization by H. minnesotensis, H. 
minnesotensis inoculation significantly 
improved the biomass, colonization 
efficiency, relationship between 
nematode parasitism and fungal 
density, and enhancement in soybean 
growth provide evidence that H. 
minnesotensis may be used as a potential 
BCA.

[103]

Arthrobotrys 
oligospora, 
Purpureocillium 
lilacinum 
and Pochonia 
chlamydosporia, 
Glomus fasciculatum

Root lesion 
nematodes

Pratylenchus zeae Sugarcane Individual or combined inoculations 
of BCAs increased shoot and root 
growth, G. fasciculatum with A. 
oligospora showed maximum shoot 
weight, P. zeae population reduced in 
all BCA inoculated plants,  nematode 
reductions in roots varied between 
50 and 77%, mycorrhizal colonization 
increased in combined treatments of 
AMF and antagonistic fungi 

[104]
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Fusarium oxysporum f. 
sp. cepae (foc)

Stem and 
bulb
nematode

Ditylenchu dipsaci Garlic Interaction of D. dipsaci and Foc 
reduced the severity of disease in  bulb 
and lowered the nematode populations 

[105]

Fusarium inflexum, 
Thielavia terricola,
Trichoderma 
brevicompactum, T. 
harzianum,
T. longibrachiatum, 
Penicillium citrinum

Reniform 
nematode

Rotylenchulus
Reniformis

Coriander
and Cowpea

The NF fungi caused nematode 
mortality, allowed only 5 to 20% of 
the juveniles to hatch, fungal filtrates 
significantly reduced the number of 
egg masses and the reproductive factor 
of R. reniformis. 

[106]

Purpureocillium 
lilacinum 

White tip 
nematode

Aphelenchoides besseyi Rice Significantly reduced white tip 
symptoms and kernel numbers in 
panicles and panicle weight

[107]

Volutella citronella Cyst 
nematode

Aphelenchoides 
besseyi, Bursap-
helenchus xylophilus, 
and Ditylenchus 
destructor

Potato The mortality rate was 100, 100, and 
55.63%, respectively for each nematode

[108]

Monacrosporium 
thaumasium

Beer mat 
nematode

Panagrellus redivivus In vitro BCA produced   chitinases of two 
distinct molecular weights, 27 and 
30 kDa with nematocidal activity, 
enzymes significantly reduced number 
of P. redivivus larvae by 80%.

[109]

Table 4. Some Examples of Potential Bacterial BCAs Against Plant-parasitic Nematodes 

Bacterial BCAs Major PPN Nematode Species Host Plants Major Findings References

B. cereus, B. subtilis, B. 
thuringiensis, 
B. megaterium

Root-knot 
nematodes

Meloidogyne spp. Soybean The filtrate mixture of BCA caused 
approximately 85–90% immobility 
of second- stage juveniles (J2) of 
nematode after 96 h

[115]

Bacillus subtilis Sugarcane Effectively controlled the 
nematodes in all three cycles of 
sugarcane production

[116]

Pasteuria penetrans M. arenaria Peanut Local change in specificity on a 
yearly basis, exhibited ability to 
infect and suppress target pest

[117]

Bacillus cereus, B. pumilus, B. 
subtilis,
B. flexus,
B. megaterium 

Cyst 
nematodes

Globodera 
rostochiensis

Potato BCAs were nonpathogenic and 
had protease and chitinase activity; 
could be used as potential BCA for 
golden cyst nematode

[118]

Ensifer fredii Heterodera glycines Soybean The mortality of J2 treated with 
BCA increased with exposure 
time, reduced egg hatching within 
cysts, H. glycines were repelled by 
the BCA

[119]

Pseudomonas
donghuensis, Pseudomonas sp.

Root lesion 
nematodes

Pratylenchus
 Penetrans

Onion PGPR application 
decreased nematode populations on 
onion roots, enhanced root length 
and dry weight, PGPR strains 
showed nematicidal activity, 
produced chitinases and proteases, 
and formed biofilms

[120]

Combination of P. fluorescens 
and Purpureocillium lilacinum

Burrowing 
nematode

Radopholus similis Banana P. fluorescens with P. lilacinus 
effectively reduced the burrowing 
nematode populations in soil and 
roots

[121]

Bacillus sp. (CBSAL02), 
Pseudomonas sp. (CBSAL05)

Stem and 
bulb
nematode

Ditylenchus spp. 
and 
M. javanica

Garlic Bacterial BCAs CBSAL02 and 
CBSAL05 significantly reduced 
the hatching of M. javanica eggs 
by 74% and 54.77%, respectively 
and motility of Ditylenchus spp. by 
55.19% and 53.53%, respectively 

[122]
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Drechmeria coniospora and Verticillium spp.[91,92]. As 
an example, the Arthrobotrys oligospora, a nematode-
trapping fungus has been found to have a significant 
deleterious effect on Meloidogyne javanica infecting 
tomato by forming a specialized penetration tube to 
pierce the nematode cuticles[93]. The killing of PPNs by 
NF is also done through nematicidal or nematostatic 
compounds released into the soil[94,95]. Among toxic 
metabolites, mycotoxins are commonly used by toxin-
positive NF to immobilize or kill PPNs[96,97]. 

Bacterial mechanisms to antagonize PPNs may 
include the production of antibiotics, endospores, 
hydrolytic enzymes, VOCs, Cry proteins (pore-forming 
toxins) etc[110,111]. Apart from directly suppressing the 
PPNs, many soil microbiome including arbuscular 
mycorrhizal fungi (AMF), indirectly facilitate the growth 
and development of agriculturally important crops by 
inducing plant defense mechanisms against PPNs, for 
example, inducing signal substrate production, regulating 
gene expression, and enhancing protein production and 
maintaining plant hormone levels[112-114]. Acknowledging 
the importance of interaction between NMs and PPNs, 
the area looks interesting because nematophagous 
BCAs can be used to manufacture inexpensive and 
environmentally friendly namatocides as an alternative 
to synthetic chemicals used to manage PPNs. Some 
hydrolytic enzymes such as serine protease, chitinase 
and toxins released by NMs into soils can play important 
roles in destroying infection and thereby protecting crops 
from the PPNs attack. 

5 MICROBIAL VOLATILOMES: A RECENT APP- 
ROACH FOR CONTROLLING PHYTOPATHO-
GENS

Control agents also synthesize VOCs that mitigates 
the crop diseases by preventing root colonization of 
plant pathogens. The VOCs released by microbiome, 
varying in chemical composition is preferred in 
sustainable agriculture over synthetic fungicides due to- 
(i) long-range of action, (ii) easy decomposition, and (iii) 
higher biocontrol efficiency[124,125]. Approximately 2000 
bacterial VOCs are known to be secreted by almost 1000 
microbial species, the predominant VOCs are alkenes, 
alcohols, ketones, terpenes, benzenoids, pyrazines, acids, 

Bacillus 
amyloliquefaciens (FR203A), B. 
megaterium (FB133M), B. 
thuringiensis (FS213P), B. 
thuringiensis (FB833T), B. 
weihenstephanensis 
(FB25M), B. 
frigoritolerans (FB37BR), and P. 
fluorescens (FP805PU) 

Fanleaf 
virus 
nematode

Xiphinema index Grapevine The three initial consortia 
showed effective control of 
parasite, significantly lowered the 
reproductive indices, damages 
caused by X. index were declined 
by all BCAs without any difference 
among BCA formulations.

[123]

Xenorhabdus bovienii White tip 
nematode

Aphelenchoides 
besseyi

Rice The X. bovienii suppressed the A. 
beseyi populations

[107]

and esters[124,126]. The fungal volatiles are dominated by 
alcohols, benzenoids, aldehydes, alkenes, acids, esters, 
and ketones[127]. Bacterial species that produce VOCs 
belongs to genera Bacillus, Burkholderia, Collimonas, 
Pseudomonas , Serratia, Stenotrophomonas  and 
Streptomyces while fungi include Aspergillus, Fusarium, 
Muscodor and Alternaria (Table 5). The co-inoculations 
of B. cereus Rs-MS53 and P. helmanticensis Sc-B94 
have been found to effectively suppress the pathogenic 
fungus R. solani[128]. Similarly, R. solani, a soil-borne 
pathogen, secreted a variety of VOCs that facilitated 
plant growth, development, altered plant emissions, and 
decreased insect resistance[129]. The synthesis of HCN by 
some Pseudomonas spp., such as P. fluorescens CHA0, 
is a well-known example of volatile-mediated fungal 
inhibition against Thielaviospis induced tobacco root 
rot[130].

6 NANO-BIOFORMULATIONS IN DISEASE 
MANAGEMENT 

Nanotechnology, an exciting technology with broader 
applications in different disciplines including agriculture, 
biomedicine, food packaging and environment[141] has 
generated exceptional interests among global researchers 
due to their unique features[142-144] such as size (10 to 
100nm), large surface area to volume ratio, high surface 
energy, quantum confinement and many other catalytic 
and magnetic activities of nanoparticles (NPs)[145,146]. 
The application of NPs or NPs based formulations 
are increasing in agriculture including plant disease 
management also[147,148] due to- (i) precise delivery of NPs 
to targeted sites (ii) capability of NPs to enhance nutrient 
use efficiency and (iii) its ability to reduce nutrient losses 
during application or leaching into water systems[149]. The 
NPs based formulation often called nanoformulations 
or nanobioformulations involves the use of biological 
resources such as microbes. The nanoformulations 
should contain all properties of NPs like shape, size, no 
eco-toxicity, easy transport delivery and disposal[150]. 
Due to these properties, nanoformulations are considered 
potential plant growth enhancer in crop production 
practices[151-153]. Realizing the phytopathogen inhibiting 
abilities of NPs, the nanomaterial-based formulations 
have been applied and found useful in up-regulating 
crop production by impeding the phytopathogens[154,155]. 
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Table 5. Volatilomes Synthesized by Antagonist Microbiomes Against Phytopathogens

Antagonists Target Organisms Main VOCs Effects of VOCs References

Lysobacter Pythium ultimum 
Rhizoctonia solani, 
and Sclerotinia minor.

2,5-Dimethylpyrazine, 
2-ethyl-3-
methoxypyrazine 
and 2-isopropyl-3-
methoxypyrazine

Induce resistance against abiotic and 
biotic stresses and Inhibits spore 
germination and mycelial growth

[131]

Trichoderma gamsii Panax notoginseng dimethyl disulfide, 
dibenzofuran, 
methanethiol, ketones,

Controls plant pathogens, activate 
plant immunity, and enhance plant 
growth

[132]

Streptomyces sp. Rhizoctonia solani, Phoma 
medicaginis, Fusarium 
solani Fusarium oxysporum 
and Sclerotium rolfsii 

3-carene 2,5-dione, 
geosmin, beta-
cubebene and Phenol, 
2-(1,1-dimethylethyl)-6-
methyl-

Alter hyphal morphology and inhibits 
conidial germination 

[133]

Pseudomonas sp. Verticillium dahlia 1-undecene, 
(methyldisulfanyl) 
methane and 1-decene, 
tridecane, 1-decene

Plant growth promotion and anti-
fungal activity

[134]

Bacillus spp. Macrophomina phaseolina Benzene, 1, 3-diethyl- 
and Benzene, 1, 4-diethyl 
followed by naphthalene, 
m-ethylacetophenone 
and ethanone, 
1-(4-ethylphenyl)

Mycelial growth inhibition, deformity 
of mycelium, inhibition of sclerotia 
germination, and ultrastructural 
alterations of cell organelles

[135]

 Bacillus spp. Fusarium oxysporum f. 
sp. niveum 

2-heptanone, 2-ethyl-1-
hexano, and 2-nonanone

Plant growth promotion and 
antifungal activities

[136]

Corallococcus sp. Fusarium oxysporum f. sp. 
Cucumerinum

trans-1, 2-pentyl-
1-heptene, 259 
1H-cyclopenta-1,3-
cyclopropa-1,2-benzene 
and 3-Undecanone. 
2-hexyl-1-decanol and 
2-octyl-1-dodecanol

Damage cell wall and cell membranes, 
Apoptosis, accumulation of reactive 
oxygen species (ROS), inhibits 
mycelial growth, antifungal activity

[137]

Bacillus spp. Fusarium kuroshium ketones and pyrazine 
compounds, 

Inhibits mycelial growth,
antifungal activity

[138]

Stenotrophomonas sp. Bacillus pumilus dodecane, 2,6,10-trimethyl 
dodecane, 2,6,11-trimethyl

Antibacterial activity,
inhibits root attachment, chemotaxis 
and motility, damages the cells

[139]

Pseudomonas putida Ralstonia 
pseudosolanacearum

2, 5-dimethyl pyrazine; 
2-methyl pyrazine; 
dimethyl trisulphide; 
2-ethyl 5-methyl pyrazine; 
and 2-ethyl 3, 6-dimethyl 
pyrazine

Antibacterial, antifungal, completely 
inhibits oomycetes

[140]

Due to many problems linked with the application 
of synthetic pesticides in disease management, metal 
oxide NPs (MONPs) have received greater attention as 
nanoformulations in plant disease management because 
they are- (i) much smaller than bulk molecule, (ii) 
required in small quantities, (iii) inexpensive relative 
to expensive conventional agrichemicals, and (iv) 
benign[156-158].

Nowadays, Bacillus based nanoformulations are 
preferred against phytopathogens since Bacillus 
spp. secretes a variety non-ribosomically antagonist 
substance, including iron chelating compounds, 
lipopeptides, antimicrobial peptides, and polyketide 
compounds[159]. The Bacillus species such as B. 

stearothermophilus, B. laterosporus, B. circulans, 
B. licheniformis, B. amyloliquefaciens, B. pabuli, B. 
magaterium, B. thuringiensis and B. subtilis produce 
chitinase which can break the cell wall chitin of the 
conidia, hyphae, sclerotia as well as chlamydospores 
and have shown antifungal activity against Aspergillus 
favus, A. niger and Penicillium chrysogenum[151]. 
Nanoformulations are also used as carrier materials for 
the controlled release of BCAs due to slow delivery of 
the active ingredient and improved solubility to have 
maximum inhibitory effect against phytopathogens[160]. 
Recently, bacterial based nanobioformulations prepared 
using carbon nanotubes and silicon oxide NPs was found 
effective against Phytophthora drechsleri, capable of 
causing pistachio gummosis, and increased the growth 
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and crop yields[161]. Besides bacteria-based formulations, 
fungus-based formulations are also used against the 
phytopathogens. In a study, two types of nano-capsules, 
nanoemulsion, and powdered nanoformulations were 
prepared using fungus Talaromyces flavus and tested 
against the pathogenic fungus F. oxysporum f. sp. 
cucumerinum. The nanopowder was found as the most 
potent nanoformulation that maximally inhibited the 
pathogen compared to nanoemulsion based nanofungal 
formulations[162]. Similarly, the biocontrol capability 
of Serratia marcescens SU05's bovine serum albumin 
(BSA) NPs loaded with extra cellular chitinase had 
inhibitory effect against phytopathogenic fungus 
Alternaria alternata. Nano-enzyme conjugate at all 
concentrations significantly reduced the fungal biomass, 
with maximum damage to fungal hyphae fragments. 
It was suggested that the nanoformulations could be 
developed and applied in field environments for efficient 
control of phytopathogenic fungi[163]. The conventional 
and new emerging trends highlighting the importance of 
microbiomes in disease suppression are summarized in 
Figure 2.

Besides controlling the phytopathogens, NPs also 
play significant roles in plant growth and development 

beginning from seed germination to optimization of 
crop yields[164]. In a study, selenium NPs were found to 
exhibit positive effects on the length of shoots, roots, 
and the germination percentage of Hordeum vulgare[165].  
Similarly, the silver and titanium oxide NPs revealed 
positive impacts on seed germination, seedling growth, 
chlorophyll content, antioxidant activity and carotenoid 
content of tomato plant [166]. In yet other reports, 
Zinc oxide nanoparticles, prepared from foliage of 
Coriandrum sativum, when used as nanofertilizer had 
stimulatory effects on growth of various pulses, such as 
Bengalgram, Turkishgram, and greengram. The effects 
were obvious on seed germination, chlorophyll, and 
protein content leading to overall improvement in plant 
performance[167]. 

7 CONCLUSION
Crops in general are susceptible to many biotic 

stresses including soil borne bacterial and fungal 
pathogens that distinctly diminish the food quality and 
crop yields. The reduction in production can be managed 
by adopting both traditional and advance approaches. The 
unreasonable cost, development of resistant pathogens 
and environmental hazards resulting from pesticidal 
applications are serious concerns. The intervention of 

Figure 2. Schematic overview of recent approaches involving plant microbiome, microbial volatilomes and 
nanobioformulations strategies that can be adopted and integrated to generate a more holistic picture of microbiome 
consortia and mechanisms involved in phytopathogen suppression leading to crop optimization. BCA, Biocontrol agents; 
JA, Jasmonic acid; SA, Salicylic acid; ROS, Reactive oxygen species; N, P and Fe indicates nitrogen, phosphorus and iron 
respectively; NPs, Nanoparticles.
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microbial formulations and nanobioformulations in 
intensive crop production practices provide a safe and 
an effective solution to the problems of biotic stresses. 
They can also act as growth enhancer by supplying 
nutrition to plants and consequently enhances crop yields 
under stressed open field conditions. The microbiome 
endowed with many disease suppressing abilities could 
be developed and commercialized for upregulating the 
food production under real field conditions. The genetic 
manipulation of microbial antagonists especially genes 
associated with disease suppression/growth promotion 
into bacterial/fungal microbiome lacking such activity 
are needed. 
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