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Abstract
In this work, the structural stability of cubic (α), tetragonal (β), and orthorhombic 
(γ) phases of perovskite CsSnI3 and their phase transitions have been studied 
by density functional theory (DFT) calculations, and the results obtained 
have been compared with the characteristics of nonperovskite orthorhombic 
(δ) modification of CsSnI3 compounds. The relaxed structures of the CsSnI3 
phases were produced and their geometrical properties were assessed using 
the strictly constrained normalized potential (SCAN) functional. According to 
the results, the energetic hierarchy of CsSnI3 polymorphs is Eβ>Eα>Eγ>Eδ. The 
phonon and thermodynamic characteristics as well as the temperatures of 
phase transitions of CsSnI3 have been estimated using the Phonopy tool based 
on SCAN relaxed structures. The nature of the change in the total energy of 
the four phases of CsSnI3 from VASP package calculations justifies the trends 
of free energy, entropy, enthalpy, and heat capacity. In contrast, the β- phase, 
which has the highest energy among the perovskite phases, is extremely 
unstable. It was discovered that the tetragonal phase becomes stable at 450K 
and transitions to the cubic phase at lowering temperatures. CsSnI3 undergoes 
a phase transition between γ- and β-phases at 300-320K. At temperatures 
below 320K, a black-yellow transformation of CsSnI3 occurs, in which the black 
perovskite transforms into a yellow non-perovskite conformation. It was found 
that temperature phase transitions occur between two orthorhombic phases of 
CsSnI3 at 360K, although direct transitions of the α⟷γ and γ⟷δ types have not 
yet been reported in the literature, with the exception of γ→δ transitions under 
the influence of moisture.
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1 INTRODUCTION
Metal halide perovskites have garnered significant 

interest from a diverse array of researchers and industrial 
businesses worldwide in recent years. Solar cells, catalysts, 
light-emitting diodes (LEDs), lasers, X-ray detectors, 

photodetectors, and field-effect transistors are only a few 
of the technological and commercial uses for them[1-10]. 
The development of LEDs and luminous bodies with light 
pumping in the form of luminescent materials has also 
made halide perovskites popular and advised[8-10].
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Perovskite-based semiconductor functional materials 
have remarkable physical and chemical properties, 
including tunable energy band gap, low reflectance, a fairly 
broad absorption spectrum, high absorption coefficient, 
good photoconductivity, high charge carrier mobility, low 
exciton binding energy and long diffusion lifetime, optimal 
electron-hole diffusion lengths, and ferroelectricity[8-13]. 
These attributes account for the growing demand in this 
field. They are now widely utilised as the primary raw 
material in the absorption layers of solar converters and 
are actively contributing to the global campaign to combat 
environmental pollution by lowering the proportion of 
carbon dioxide emissions. Since the massive burning 
of fossil fuels in recent years has resulted in the release 
of enormous amounts of greenhouse gases into the 
atmosphere, such as CO2 and CH4, perovskites, along with 
other materials, are actively involved in the programme to 
reduce the rate of use of the earth’s depleting fossil fuels 
in the long run. In order to avert the dire implications of 
global warming in the near future, authorities in major 
powers are expressing increasing interest in creating new 
alternatives to renewable (clean or low-carbon) energy 
sources in order to cut greenhouse gas emissions and 
ensure energy independence. Solar energy is the most 
promising of the various renewable energy sources now 
available around the world. According to NREL[14], in recent 
years, the efficiency of perovskite solar cells has increased 
markedly from 3.8% to more than 26.1%. The highest 
reported power conversion efficiency ratio for layered lead 
perovskite (MAPbI3) solar cells is 25.2%[15]. However, these 
substances exhibit instability in response to temperature, 
humidity, UV radiation, and other environmental factors[16]. 
Another notable problem is the relatively low dielectric 
constant of Pb-containing perovskites (MA, Cs) PbX3 
(X = I, Br, Cl and F), as a result of which the rate of 
charge recombination increases and the performance 
characteristics of solar cells based on them deteriorate[17]. 
Lead (Pb), which is poisonous and may be harmful to 
the environment, is another issue[18]. The development 
and enhancement of lead-free perovskites’ properties as 
a substitute for those containing toxic lead is therefore 
crucial. This supports the EU regulation that prohibits and 
restricts the use of compounds containing lead (Pb) in 
all electronic and electrical devices because of its toxicity 
impact[18], which aligns with the objectives of the UN 
sustainable development strategy, specifically SDGs 7 and 
13[19,20].

Lead-free alternative new metal halide organic-inorganic 
compounds have supplanted lead-containing perovskites 
in recent years, and materials scientists are working hard 
to develop these materials. The superior conductivity and 
absorption of inorganic perovskites made by substituting 
Sn and Ge for Pb have garnered interest compared to lead-
based perovskites. It is asserted, meanwhile, that certain 
of these chemicals have additional issues. For instance, 
it was discovered that CsSnBr3 exhibits plasticity while 
CsGeI3 exhibits brittle behaviour[21,22]. Numerous other 
candidates exist, such as yellow-phase compounds based 
on Cs and Sn trihalides (δ-CsSnI3, δ-CsSnBr3, δ-CsSnCl3, 

and δ-CsSnF3), which lack the aforementioned drawbacks 
but are characterised by a large band gap that lowers 
the material’s absorption capacity. Controlling the band 
gap, however, can be achieved easily by temperature-
induced phase transitions[23,24], hydrostatic pressure and 
impurity composition and doping changes[25]. It is known 
that in addition to the effect of temperature on the phase 
transition of perovskites, pressure is an important tool for 
effective control of the phase structure[26-28].

CsSnI3 appears to be the most promising of these 
chemicals. Though the issue of low stability prevents 
further advancement in this field, black low-bandgap 
versions of CsSnI3 are well suited for solar systems. 
Develop a plan for the suitable introduction of external 
influences, such as the influence of temperature and 
doping, in order to successfully advance in this direction 
and improve the properties of CsSnI3. This will allow for 
the control and optimisation of the band gap in addition 
to increasing stability. The stability and band gap in any 
metal halide perovskites of the general formula ABX3 have 
been shown in recent years to strongly depend on the 
interaction of “B” and “X” of the group X = I, Br, Cl, and 
F. These factors increase with increasing electronegativity 
of the “X” cation, which in turn causes a decrease in 
the length of the B–X bond[29]. However, it has been 
demonstrated that substituting an element for the “A” 
position does not significantly alter the band gap; instead, 
it mediates the patterns and effects of the B–X interaction 
through the lattice parameter, which can occasionally 
occur in conjunction with a phase transition brought on 
by doping[30]. Furthermore, comprehending the nature of 
temperature-dependent phase transition influence on the 
electrical structure and Fermi level behaviour is essential 
for a thorough investigation of doping-induced phase 
transitions and their impact on the variation in the band 
gap of CsSnI3.

In recent decades, there has been growing interest in 
studying the influence of the thermodynamic parameters 
of perovskites on their electronic and optical properties. 
This is because the consistent performance of devices 
based on these materials and their numerous technological 
applications are closely related to the thermal and 
thermodynamic properties of the raw materials from which 
they are made into electronic devices.

As a consequence of recent theoretical research on 
perovskites’ characteristics in addition to experimental 
observations, perovskite solar cells’ efficiency has been 
steadily rising. Density functional theory (DFT) is one such 
potent theoretical technique that, in the last ten years, has 
grown to be a significant tool for the theoretical study of 
solid materials. This is because DFT offers a highly accurate 
reformulation of quantum mechanical calculations of solids 
and accounts for the behaviour of electrons in all atomic-
molecular environments. This is because contemporary 
computing clusters can solve the Kohn-Sham equations 
efficiently[31]. However, these formulas are predicated on a 
single estimate, that of the exchange-correlation energy, 
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which accounts for the precision of quantum computations.
This work investigates the temperature phase 

transitions and structural stability of lead-free perovskite 
based on CsSnI3 through DFT simulations. In order to 
accurately evaluate the phonon properties and phase 
transitions of CsSnI3, the structure of the materials under 
study was well relaxed using the strictly constrained 
normalized potential (SCAN) functional. This is because 
an accurate evaluation of the thermodynamic properties is 
crucial for selecting the right alloying element to stabilise 
CsSnI3 under environmental conditions.

2 METHODS
The structural properties of the α-, β-, γ- and δ-phases 

of CsSnI3 are investigated based on DFT. Calculations were 
carried out in the VASP plane wave package[32]. The crystal 
structures of α-CsSnI3 (cubic), β-CsSnI3 (tetrogonal), 
γ-CsSnI3 (orthorhombic) and δ-CsSnI3 (non-perovskite 
orthorhombic) were fully optimized taking into account the 
relaxation of lattice parameters and atomic positions. All 
four modifications of CsSnI3 were relaxed using SCAN[33]. 
However, all SCF calculations were implemented using the 
generalized gradient approximation to avoid large values of 
the calculated energy. The electronic states Cs[5s25p66s1], 
I[5s25p5] and Sn[5s25p2] were considered as valence 
electrons. A kinetic energy cutoff value of exactly 450eV 
was established based on the results of the convergence 
test. Monkhrost-Pack grids of 8×8×8, 6×6×8, 5×5×4, and 
5×10×3 were installed for cubic, tetragonal, orthorhombic 
(perovskite), and orthorhombic (non-perovskite) phases, 
respectively. However, 800 eV has been established as 
the cutoff energy value for calculations of thermodynamic 
properties. The Phonopy code[34] was used to calculate 
thermodynamic characteristics and phonon dispersion 
at lower k-point values because these calculations are 

computationally demanding, particularly for larger systems 
with low symmetry. Using VASP as a calculator, the forces 
were computed on supercells of the following sizes: 
2×2×2(α), 2×1×2(β), 1×1×2(γ), and 1×2×1(δ). Phonon 
frequency estimates were selected on an interpolated 
grid of 32×32×32 q-points (for the α and β phases) and 
24×24×24 for the two orthorhombic (γ and δ) phases. The 
calculations in the Phonopy package are carried out on a 
40-atom supercell using a reduced k-point grid (6×6×6, 
6×5×5, 3×2×3, and 2×4×2 for α, β, γ, and δ - phases, 
respectively). As the temperature of phase transitions 
of CsSnI3 were taken the temperatures in which the 
difference of calculated free energy of phases (DF) is equal 
to zero, and the value of F for the α, β, γ and δ phases was 
considered as the sum of their Helmholtz free energies 
from Phonopy calculations and the value of free energy (E0) 
found from VASP calculations:

F(T) = U – TS = E0 + ΔU (T) – TS(T)

where ΔU is the difference in internal energies.

3 RESULTS AND DISCUSSION
The relaxed geometric characteristics and crystal lattice 

constants of the α-, β-, γ- and δ- modifications of CsSnI3 
are given in Table 1 and compared with the results of 
experimental measurements.

According to Table 1, in contrast to the well-known 
generalized gradient functional proposed by Perdew-Burke-
Ernzerhof, which usually does not very correctly estimate 
lattice parameters, the SCAN functional will be able to 
give results comparable and in good agreement with 
experiment, which indicates its effectiveness for optimizing 
similar solid-state systems. This agreement is also evident 
when comparing our calculated X-ray diffraction patterns 
(using the example of γ-CsSnI3) with the findings of 
Zhou et al.[36], which makes it evident that our results are 
similar to those of the experimental observations (Figure 
1). Calculations indicate that the phase transformation 
of CsSnI3 results in a considerable change of interatomic 

Table 1. Relaxed Lattice Constants of α-, β-, γ- 
and δ- phases of CsSnI3

α 
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Figure 1. Comparison of theoretical X-ray patterns 
of γ-CsSnI3 with X-ray patterns of the orthorhombic 
phase of CsSnI3 perovskite[36] obtained by the Bridg-
man method.
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distances, particularly Sn-I. The bond angles Sn-I1-Sn and 
Sn-I2-Sn likewise alter as a result.

The values of total energies of the α-, β-, γ-, and δ-phases 
of CsSnI3 are compared in Table 2, which indicates that 
the δ-modification of this compound is the most stable 
conformation for CsSnI3. γ-CsSnI3, on the other hand, is 
the most stable iodide with a perovskite structure. Our 
ground state calculations precisely reproduce the phase 
stability of CsSnI3 at the ambient temperatures.

The non-porovskite phase of CsSnI3 has the lowest 
energy structure, based on the results shown in Table 2. 
That is, at 0K, the most stable phase is the non-perovskite 
phase (δ-CsSnI3), which is followed by γ-CsSnI3.

In addition to the results presented in Table 2, we 
obtained temperature-dependent curves of Helmholtz free 
energy and relative entropy, as well as phonon modes from 
which we can evaluate the correctness of the field energy-

based stability assessment approach[37]. In Figure 2 shows 
graphs of the temperature dependence of the Helmholtz 
free energy (F) for the α-, β-, γ-phases relative to the 
δ-phase of CsSnI3. Also in Figure 3A and B shows the 
temperature dependence curves of entropy (ΔS) and heat 
capacity (Cv) for four phases of CsSnI3.

According to the results of Figure 2, at 0K, the β phase 
has the highest energy among the perovskite phases, 
and the energy value for the γ phase is the lowest. In 
this case, the cubic phase is fixed between these phases. 
However, according to the graph, it is the tetragonal phase 
that becomes the most stable at high temperatures. The 
orthorhombic perovskite phase remains energetically 
close to the α phase up to high temperatures. The results 
of calculations indicate that in the 320-360K range, there 
is energy rivalry between the β- and γ-phases of CsSnI3 
and its non-perovskite phase. The free energy of high-
temperature phases in nearly all temperature ranges is 
higher than the free energy δ-CsSnI3, which defies the 
direct dependence of free energy and material stability, as 
shown by the data in Figure 3. A similar tendency can also 
be seen in the overall heat capacity image.

Figure 4 compares and shows the enthalpy dependence 
curves (ΔH) of the systems under study, obtained based 
on the expression:

ΔH=F+ΔS*T

Figure 3. Variation of the entropy (A) and heat ca-
pacity (B) depending on temperature for α-, β-, γ- 
and δ-phases of CsSnI3.

Table 2. Calculated Total Energies (E) of 
CsSnI3 Phases

System Energy/atom E-Eδ

α-CsSnI3 -2.8198 0.0108

β-CsSnI3 -2.8171 0.0235

γ-CsSnI3 -2.8201 0.0105

δ-CsSnI3 -2.8306 0

Figure 2. Free energy difference (Helmholtz) of 
the α-, β-, γ-phase relative to the δ-modification of 
CsSnI3 as a function of absolute temperature.
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Figure 4. Temperature-dependent enthalpy vibration 
of α-, β-, γ- and δ-phases of CsSnI3.
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where T is the absolute temperature. From the results, 
it can be seen that the β phase has the highest enthalpy 
and the δ phase is naturally the lowest in all temperature 
ranges.

The phase transition temperatures for CsSnI3 were 
then determined by subtracting the estimated free 
energies of the phases ([α-β], [β-γ], and [α-δ]). In this 
case, the free energy was calculated as the sum of the 
minimum energy obtained from the VASP calculations 
with the Helmholtz free energies from the calculated 
Phonopy package. Phase transition diagrams were plotted 
in independent coordinate systems and further combined 
into one figure (Figure 5) to compare phase transition 
diagrams in the same range of energy differences, since 
CsSnI3 phases undergo complex phase transitions at 
different temperatures.

According to the results presented in Figure 5, CsSnI3 
crystals are characterized by three cases of phase 
transitions in certain temperature ranges. The critical 
temperature points of the phase transitions α⟷β, β⟷γ 
and α⟷δ indicate that the stability regions of these 
phases differ significantly from each other (Figure 5A). At 
temperatures above 450K, the tetragonal phase becomes 
stable, and below this temperature it transforms into the 
cubic phase (Figure 5B). The phase transition between 
the tetragonal and orthorhombic modifications occurs in 
the range of 300-320K (Figure 5C). At 320K, there is a 

transformation between the CsSnI3 perovskite structure 
and its non-perovskite analogue, which is known as the 
black-yellow transformation (Figure 5D). The results 
obtained are similar to the experimental measurements 
of Yamada et al.[38] with the exception of the temperature 
of phase transitions between the α and δ phases of the 
perovskite. Calculations have also shown the presence of 
temperature phase transitions between two orthorhombic 
phases of CsSnI3 at 360K, although direct transitions of 
the α⟷γ and γ⟷δ types have not yet been reported 
in the literature, with the exception of γ→δ transitions 
under the influence of moisture[39]. The relative stability 
of the non-perovskite phase of CsSnI3 is indicated by the 
lack of negative frequencies in Figure 6, which displays 
the results of first-principles calculations of the density of 
phonon states.

According to calculations, the tetragonal phase 
has a moderate contribution from the phonon state 
(Figure 6B) than its orthorhombic (Figure 6C) and cubic 
modifications (Figure 6A). The results obtained can be 
used by experimentalists for further research of crystals 
and thin films based on CsSnI3, and also complement 
the data bank of research conducted in the field of using 
perovskites to generate green energy[40-50].

4 CONCLUSION
Using DFT calculations, issues of the structural stability 

of CsSnI3 compounds are considered. Relaxed structures 

Figure 5. Comparison of the temperature dependence of the free energy difference at phase transitions of CsSnI3 
(A), and separate diagrams of the temperature dependence of phase transformations such as α⟷β (B), β⟷γ (C), 
and α⟷δ (D) for CsSnI3..
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for four phases of CsSnI3 were obtained and their 
structural stability was assessed from the point of view of 
comparing the total energy, entropy and enthalpy of their 
formation. The trends in free energy, entropy, enthalpy, 
heat of formation and heat capacity are justified in terms 
of the pattern of changes in the total energy of the four 
phases of CsSnI3 from VASP calculations. Stable phases 
of CsSnI3 at 0K are shown and compared. The critical 
temperatures of phase transitions are found, including 
the temperature of the black-yellow transformation of 
CsSnI3. The presence of temperature phase transitions 
between two orthorhombic phases of CsSnI3 at 360K was 
discovered, despite the fact that direct transitions of the 
α⟷γ and γ⟷δ types have not yet been reported in any 
experiment, with the exception of the γ→δ transitions 
under the influence of moisture. This study will help to 
deeply understand the features of the thermodynamic 
properties of CsSnI3 and list the disadvantages of 
their properties, so that in the future it is advisable 
to take measures and select stabilizing elements, 
without gross negative impact on their optoelectronic 
properties, including the band gap and the ability of good 
photoabsorption.
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