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1 INTRODUCTION
The development of efficient and cost-effective 

catalysts for the hydrogen evolution reaction (HER) 
is important to advanced water electrolysis and the 
widespread adoption of hydrogen as a clean and 
sustainable energy source[1,2]. While noble metals such 
as Pt and Pd exhibit exceptional HER activity, their 
limited natural reserve and high cost pose significant 
challenges for large-scale implementation[3,4]. As a 
result, there is a growing interest in exploring non-
precious metal-based catalysts as alternatives. Non-
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precious transition metals, including Fe, Co, Ni, Cr, W, 
and Mo, are promising due to their earth abundance and 
lower cost compared to noble metals[5-7]. However, these 
metals often have unsatisfactory hydrogen adsorption 
properties and poor catalytic activity. To address these 
limitations, researchers have proposed and investigated 
various strategies to optimize the electronic structures 
of non-precious metal-based catalysts. These strategies 
include doping, defect engineering, construction of 
single-atomic catalysts, and engineering heterogeneous 
structures, as illustrated in Figure 1[8,9].
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2 CATALYTIC MECHANISM OF HER
HER involves a two-electron transfer process in water 

electrolysis occurring on the cathode. During HER, H+ 
(under acidic conditions) or H2O (under alkaline and 
neutral conditions) accepts electrons on the catalyst 
surface to produce high-purity hydrogen gas[10]. Figure 2A  
illustrates the HER process in both acidic and alkaline 
media. In acidic conditions, the presence of H+ ions 
allow the Volmer step to occur on the catalyst’s surface, 
producing adsorbed hydrogen species (H*). However, in 
alkaline solutions where H+ ions are scarce, an additional 
water dissociation step becomes necessary within the 
Volmer process. Following the Volmer step, the catalyst 
proceeds to the subsequent steps, namely the Tafel or 
Heyrovsky steps, to generate H2. These steps contribute 
to the overall hydrogen evolution process. Thus, the 
catalyst’s proficiency in water dissociation and activation 
significantly influences the catalytic activity of alkaline 
HER. The Gibbs free energy of hydrogen adsorption (ΔGH) 
on the catalyst plays a crucial role in both the Volmer-
Heyrovsky and Volmer-Tafel processes[11]. Generally, a 
small ΔGH makes it challenging for the hydrogen product 
to desorb, while a large ΔGH results in weak adsorption 
of H species[12]. Therefore, the desirable catalysts should 
possess a thermally neutral ΔGH of zero. The volcano plot, 
which compares different materials, reveals that noble 
metals like Pt and Pd exhibit excellent HER activity due to 
the suitable ΔGH, as shown in Figure 2B[13]. However, their 
natural scarcity and high cost are hampering widespread 
industrial applications.

3 REGULATION STRATEGIES OF 
NON-PRECIOUS METAL-BASED 
ELECTROCATALYSTS

Recently, extensive research has been conducted on 
non-precious metals such as Fe-group elements (Fe, 
Co, and Ni), Cr-group elements (Cr, Mo, and W), and 
so on to identify suitable alternatives with high natural 

Figure 1. Scheme of the regulation strategies of non-
precious transition metal-based catalysts for HER.

abundance for HER. However, non-precious metals often 
have unsatisfactory ΔGH, which is closely related to the 
electronic structure of the active centers. To address 
this issue, various strategies have been proposed, for 
instance, doping, defect engineering, construction of 
single-atomic catalysts, and heterogeneous structure 
engineering. These approaches aim to modify the 
coordination environment of the active sites in non-
precious metal-based catalysts, optimize hydrogen 
adsorption, and enhance the catalytic activity[11,14]. 
These strategies are important to the development 
of low-cost and efficient non-precious metal-based 
catalysts for hydrogen production.

Fe-group elements, including Fe, Co, and Ni are 
located in group VIII of the periodic table. The volcano 
plots reveal that these elements such as Co and Ni have 
high binding energies with hydrogen intermediates (Had), 
thus showing inferior activity compared to precious 
metals. However, these elements have good affinity 
to oxygen consequently facilitating the dissociation of 
water in alkaline electrolysis[15]. Non-precious transition 
metal based compounds such as NiSe2

[16] and CoS2
[17] 

have shown high potential as substitutes for Pt. Hence, 
researchers are focusing on developing effective 
strategies to optimize their performance, for example, 
by adjusting the phase, electronic, and geometric 
structures of the active centers.

The catalytic activity depends on the surface phase 
and structure. Therefore, surface optimization can 
enhance the catalytic activity, increase the number of 
active sites, and improve the electron transfer efficiency. 
For instance, Xu et al.[18] have studied the phase 
transition of cubic CoSe2 (c-CoSe2) to orthorhombic 
CoSe2 (o-CoSe2) by a heat treatment, which produces 
a heterophase structure denoted as (n-c-CoSe2), where 
“n” represents the percent of c-CoSe2 in the composite. 
The transformation is illustrated in Figure 3A. Density 
functional theory (DFT) calculations disclose that the 
d-band center in the heterophase structure (–1.79eV) 
is higher than those of the pure o-CoSe2 (–2.96eV) 
and c-CoSe2 (–1.94eV) phases (Figure 3B). This 
upward shift in the d-band center modifies hydrogen 
adsorption and hydrogen evolution. Among the 
different compositions, the structure of c-CoSe2 30% 
(30-c-CoSe2) exhibits the highest HER activity, requiring 
an overpotential of only 240mV to achieve a current 
density of 1,000mA·cm−2. This innovative catalyst 
design and superior performance highlight the potential 
of non-precious metal-based catalysts for HER.

As another example, Lu et al.[19] constructed a 
heterogeneous structure composed of LixNiO nanoclusters 
and polycrystalline Ni nanocrystals, as shown in Figure 3C. 
The interface between LixNiO and Ni is closely connected, 
optimizing the electronic structure of the local sites 
and facilitating hydrogenation coupling and hydrogen 
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Figure 2. HER catalytic mechanism. A: Schematic pathways of HER under acidic and alkaline conditions. B: Volcano plot 
for the HER for various metals. Reproduced from Ref.[13] with permission from Wiley-VCH.

A B

Figure 3. Regulation strategies for Co(Ni)-based electrocatalysts. A: Schematic illustration showing phase conversion 
from o-CoSe2 to c-CoSe2 via heterophase junction engineering. B: d-band center diagrams of the o-CoSe2, c-CoSe2, and 
CoSe2 heterophases. Reproduced from Ref.[18] with permission from Springer Nature. C: Schematic of nanoscale LixNiO/Ni 
heterostructures. Reproduced from Ref.[19] with permission from American Chemical Society.

A

B C

desorption. The catalyst exhibits excellent HER activity 
over a wide pH range, with overpotentials of only 20, 50, 
and 36mV to achieve current densities of 10mA·cm–2 in 
acidic, neutral, and alkaline electrolytes, respectively.

In another study by Xiong et al.[20], the electronic 
structure of metallic Ni is optimized by constructing 
a heterostructure with Ni3N. The Ni sites in the 
heterostructure show optimal hydrogen adsorption 
attributed to the optimized electronic structure resulting 
from the electronic interactions at the heterointerface of 
the two components. Compared to pure Ni and Ni3N, the 
Ni/Ni3N heterostructure requires an overpotential of only 
144mV for a current density of 10mA·cm–2.

The Cr-group elements, including Cr, Mo, and W, 
are located in the 6th period of the periodic table and 
exhibit a wide range of oxidation states. Doping with 
high-valence transition metals can further enhance 

the adsorption and dissociation ability of H2O, which is 
beneficial to the alkaline Volmer and Heyrovsky steps 
and alkaline HER. Yao et al.[21] have constructed Cr-doped 
Co4N nanorods as shown in Figure 4A. DFT calculations 
(Figure 4B) indicate significantly weakened hydrogen 
adsorption on the Co4N surface after Cr doping, and 
the Cr-Co4N catalyst requires an overpotential of only 
21mV for a current density of 10mA·cm–2. The excellent 
properties that arise from the chromium dopants 
modulate the electronic structure of Co4N to endow 
Co atoms with better hydrogen binding giving rise to 
accelerated HER.

Moreover, through defect engineering, by introducing 
an appropriate quantity of defects, it is possible to modify 
the electronic structure, surface active site density, and 
charge transfer performance of catalysts. This approach 
enhances both the activity and stability of the catalyst. 
Xu et al.[22] successfully induced phosphorus defects in 
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Figure 4. Regulation strategies for Cr(Mo, W)-based electrocatalysts. A: Surface atomic model of Cr-Co4N. B: 
ΔGH on Co4N and Cr-Co4N. Reproduced from Ref.[21] with permission from Wiley-VCH. C: Schematic representation of the 
heterogeneous structure of MSM. D: LSV curves of MSM/CC||Fe and Pt/C||IrO2 couples. Reproduced from Ref.[24] with 
permission from Elsevier. E: Atomic models of W-ACs, W (blue), C (gray), and P (pink). F: Local density-of-states of W and H 
atoms on the surface of W-SAs, W-ACs, and WC NPs. Reproduced from Ref.[25] with permission from Springer Nature.

nickel phosphide using bromine, effectively optimizing 
the hydrogen adsorption energy by adjusting the vacancy 
concentration. The resulting catalyst demonstrated 
exceptional catalytic activity for the HER in alkaline media, 
achieving an overpotential of only 18mV at 10mA·cm–2. 
Kumar et al.[23] developed defect-rich catalysts (Ni/
MoS2) by integrating uniform nickel nanoparticles into 
molybdenum disulfide. Ni/MoS2 exhibited remarkable 
HER performance, with a current density of 10mA·cm−2 
at an impressively low overpotential of only 89mV, along 
with a low Tafel slope of 59mV·dec−1.

Mo-based materials, including carbides, sulfides, 
selenides, and nitrides, are commonly used in HER[26-28]. 
However, their activity is typically lower than that of Pt-
group metals due to the strong adsorption of hydrogen. 
To overcome this limitation, an effective strategy is to tune 
the coordination environment of Mo atoms to optimize 
hydrogen adsorption. For example, Peng et al.[24] have 
synthesized the MoSe2/MoO2 heterostructure (MSM) in 
situ from MoO3 by chemical vapor deposition, as shown 
in Figure 4C. Owing to electronic transfer and synergistic 
effects at the heterointerface, the electronic states of the 
atoms at the interface are optimized. MSM has excellent 
HER catalytic activity over a wide pH range. As a cathode 
in a neutral electrolyte together with a Fe anode, the 
hydrogen production system shows a current density of 
10mA·cm–2 at only 0.68V, which is much lower than that 
the of Pt/C||IrO2 configuration (Figure 4D).

In another work, Feng et al.[29] have designed MoO2-

MoN (MoON) heterostructured nanowire arrays with 
different Mo coordination environments by precisely 
controlling the Mo-O and Mo-N configurations by 
programmed nitridation. DFT calculations demonstrate that 
ΔGH of the Mo site in MoON is closer to 0 than the pure 
MoO2 and MoN. As a result, the MoON catalyst requires an 
overpotential of only 335mV to achieve a current density 
of 1A·cm–2. The optimal ratio of Mo-N and Mo-O in MoON 
is key to the coordination environment of Mo sites and ΔGH 
on the Mo sites for enhanced catalytic activity.

W and its compounds share similar properties as Mo 
for HER. In addition, single-atom catalysts and atomic 
clusters have outstanding catalytic activity compared 
to their bulk counterparts[30]. Chen et al.[25] have 
employed a thermal migration strategy to prepare W 
atomic clusters (W-ACs), as shown in Figure 4E. W-ACs 
consist of typical W-W bonds anchored by carbon 
atoms on the carbon substrate. The single-atom W 
(W-SAs) coordinates with three carbon atoms, while 
larger tungsten carbide nanoparticles (WC NPs) have 
a hexagonal packing structure. DFT calculations show 
that ΔGH of W-ACs (–0.31eV) is closer to 0 than that of 
W-SAs (–0.46eV) and WC NPs (–0.61eV). Furthermore, 
the local density-of-states shown in Figure 4F indicate 
that W-ACs have favorable interactions with W-H bonds 
due to the three hybridized peaks near the Fermi level 
(approximately at –3.1, –2.1, and –1.1eV), resulting 
in substantial weakening of the W-H interactions and 
outstanding HER activity exemplified by an overpotential 
of only 53mV for a current density of 10mA·cm–2.

A

B

C E

FD

0.0

Co4N
Cr-4Co4N

-0.2

-0.4

-0.6

-0.8

Reaction Coordinate

△
G

(*
H

)/e
V

H++e- 1/2 H2

150

100

50

0
0.0 0.5 1.0 1.5 2.0

Voltage (V)

C
ur

re
nt

 d
en

si
ty

 (m
A 

cm
-2
)

Pt/C-IrO2

MSM/CC-Fe

0
-10 -5 0 5

2

4

6

Energy (eV)

D
O

S 
(s

ta
te

s/
eV

)

W
H EF

W-ACs

W-SAs

WC NPs

https://doi.org/10.53964/id.202400X


Xie S et al. Innov Discov 2024; 1(2): 11

https://doi.org/10.53964/id.2024011 Page 5 / 8

To summarize, in the realm of non-precious transition 
metal catalysts, various regulation strategies have 
been employed to enhance their performance. Doping 
involves introducing external atoms into the catalyst’s 
lattice, effectively adjusting its electronic structure. 
Defect engineering, on the other hand, modifies 
the catalyst’s electronic structure by creating defect 
sites on its surface, which can act as active centers 
influencing reaction sites and electron transport. Single-
atom catalysts regulate the electron environment 
surrounding active sites through surface modification 
and ligand selection, impacting catalytic performance. 
Heterojunctions play a significant role in modulating the 
electronic structure by creating electron confinement, 
potential barriers at interfaces, and inducing charge 
transfer and polarization effects.

These regulation strategies are interconnected and 
interactive. When designing and optimizing catalysts, it 
is crucial to consider the interplay between these factors 
comprehensively. By achieving precise control over the 
electronic structure, catalysts can be enhanced in terms 
of activity, selectivity, and stability. Table 1 provides 

an overview of the performance of non-precious 
transition metal HER electrocatalysts, showcasing recent 
advancements in this research field.

4 CONCLUSION AND PRO- 
SPECTIVES

The development of non-precious metal-based 
catalysts for HER is crucial to advanced water electrolysis 
and the widespread adoption of hydrogen as a clean 
energy source. This commentary highlights the 
significance of efficient HER catalysts composed of non-
precious metals and their compounds. Researchers have 
proposed various strategies to optimize the electronic 
structure of the active centers. Future research and 
development activities are expected to focus on 
optimizing the catalytic properties by various means, 
exploration of novel materials and synthetic techniques, 
and enriching our understanding of the effects on 
the fundamental processes in HER. As a result, non-
precious metal-based catalysts will continue to attract 
research attention in the effort to continuously improve 
the catalytic activity, stability, and cost-effectiveness. 

Table 1. Performance of Non-precious Transition Metal-Based Electrocatalysts for HER

Regulation 
Strategy

Catalysts Electrolyte
Overpotential 

(mV) at 10mA·cm–2

Tafel slope 
(mV·dec–1)

Ref.

Single atom Co@CCNS 1.0M KOH 70 70.6 [31]

FeMo@CoNi-OH/Ni3S2 1.0M KOH 89 92.2 [32]

Ni-MSACs 0.5M H2SO4 270 83.5 [33]

CoN3-CSG 0.5M H2SO4 82 59 [34]

SAP-Mo2C-CS 0.5M H2SO4 36 38.1 [35]

Heterogeneous 
structures

P-CoN/CMO/Co3O4/NF 1.0M KOH 109 89.1 [36]

Fe-Co0.85Se/FeCo LDH 1.0M KOH 37 43.9 [37]

Mo2N/Ni0.2Mo0.8N 1.0M KOH 26 31 [38]

Cu3P/Ni2P@CF 1.0M KOH 88.1 94 [22]

Ni3N/Mo2N 1.0M KOH 20 33.8 [39]

FeP@CoP 0.5M H2SO4 40 67 [40]

Co2P-MoNiP/NF 1.0M KOH 46 49.3 [41]

Doping Ni0.35Mo0.65O2 0.5M H2SO4 43 37 [42]

C-Ni1−xO 1.0M KOH 27 36 [43]

0.02Ni-MoP 0.5M H2SO4 102 58.1 [44]

Ni-WP2 NS/CC 0.5M H2SO4 110 65 [45]

N-NiMoS 1.0M KOH 50 86 [46]

N-doped-CoxS/CC-14 1.0M KOH 89 98 [47]

W10%-MoxC/C 1.0M KOH 178 54.3 [48]

Co-Ni2P 0.5M H2SO4 31 47 [49]

Defect engineering Ni-Sv-MoS2 1.0M KOH 101 66 [50]

Vs-Co3S4@NF 1.0M KOH 45 66 [51]

S-NiFe2O4 1.0M KOH 61 80 [52]

Mo0.7V0.3Se2 0.5M H2SO4 114 43 [53]

SV-Co9S8 0.5M H2SO4 217 97 [54]

Cr-Co4N-Nv/NF 1.0M KOH 33 37 [55]
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Moreover, the integration of these catalysts into practical 
water electrolysis systems and their scalability for large-
scale hydrogen production are the key research areas. 
Advancements in computation, modelling, as well as 
high-throughput screening techniques, are poised to 
play a crucial role in accelerating catalyst discovery and 
optimization. These innovative approaches are expected 
to empower researchers with the tools to improve the 
catalyst composition, structure, and configurations, in 
their pursuit to ultimately identify the ideal catalysts 
for commercial water splitting and foster a green 
environment.
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