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Abstract
Objective: Enhancing sustainability in on-demand transportation is a challenging task by offering 
flexible and optimized mobility solutions. This study focuses on on-demand mobility systems. We 
introduce a novel evolutionary computing method designed to address a bi-objective customized on-
demand transportation problem, aiming to minimize total travel cost and total waiting time.

Methods: The method incorporates specific optimization techniques, along with an efficient dominance 
sorting approach, using an intelligent candidate list to reduce computational time.

Results: Comparative results demonstrate the effectiveness of this hybrid computing method, particularly 
when prioritizing total travel cost from the service provider’s perspective.

Conclusion: These findings present a promising framework for decision-makers, empowering them to 
navigate favorable compromises between conflicting objectives and make informed choices aligned with 
their preferences and customer-oriented constraints.

Keywords: making decision systems, passenger transportation, quality of service, multi-objective 
methods, evolutionary algorithm

1 INTRODUCTION
On-demand transportation emerges as a significant 

challenge to sustainable development within an interactive 
design. Interactive design contributes in creating user 

interfaces for people transportation systems, see works by 
Dolgui et al[1]. This might involve developing customized 
mobile applications to facilitate persons movement 
between different zones or sites. By merging interactive 
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design with persons transportation in cities, transportation 
system providers can enhance the passengers experience 
during their trips. This helps optimizing operational 
efficiency and deals with a more connected and interactive 
environment. Figure 1 illustrates an interactive design 
involving connection between customers preferences, 
vehicles availability and transportation network locations.

As in Figure 1, unlike fixed-route services with predeter-
mined schedules, on-demand transportation operates based 
on specific requests or needs, deviating from the usual 
routes and timetables. Optimal routing plans are produced 
basing on a customized design involving the management 
of customers’ requests, vehicles routing, and scheduling 
time.

The corresponding class of transport problems was 
initially introduced by Cordeau and Laporte[2] to individuals 
with reduced mobility and called the dial-a-ride problem 
(DARP). This on-demand transportation mode has now 
expanded to serve a wide range of purposes. These include 
healthcare organizations, integrated transportation systems, 
complementary services, and private transportation needs. 
Consequently, there is a need to tackle the modelling of new 
characteristics associated with on-demand transportation, 
a task that presents significant challenges. Encouragement 
is given to the development of advanced designs that 
accommodate real-life scenarios and address the diverse 
needs of customers. For further insights into this field, refer 
to the survey conducted by Nasri et al.[3], where a new 
category of customer-oriented on-demand mobility was 
introduced.

This present work focuses on the customer oriented 
dial-a-ride problem (CODARP) introduced by Nasri et 
al[4]. The primary goal of this problem is the minimization 
of the overall travel costs while considering the negative 
impact of waiting times using appropriate penalties. The 
mathematical model incorporates customized constraints 
that are directly associated with the maximal riding time, 
which represents the maximum duration passengers spend 

Figure 1. An illustrative example of an on-demand mobility system.

aboard a vehicle, as well as time windows designated 
for specific locations. The significance of the CODARP 
extends to both the service provider and the customers, as 
it effectively reduces the total riding time and eliminates 
unnecessary waiting periods.

Another effective approach to simultaneously minimize 
the total travel costs (TTC) and maximize the quality of 
the service provided to the customer is to formulate the 
quantities as two objectives. Various researchers in the field 
have opted for bi- objective designs. Customer-oriented 
DARPs have been solved using multi-objective models[5]. 
The model proposed by Nasri et al.[5] is a bi-objective 
CODARP, minimizing two distinct objectives. The primary 
objective focused on minimizing total transport costs, while 
the secondary objective aimed to minimize total waiting 
times (TWT). The experimentation is conducted within 
CPLEX (IBM CPLEX high-performance optimization 
solvers) on real-world instances. Main results indicated that 
prioritizing the minimization of waiting times, as opposed 
to total costs, resulted in notable decreases in waiting times 
across the majority of cases.

In the field of multi-objective applications, the pareto 
ranking scheme has been frequently employed, as 
highlighted in the research of Ref[6] and Ref[7]. The Pareto 
ranking process aims to rank solutions and identify 
those that are non-dominated. While there are several 
Pareto ranking methods available to find non-dominated 
solutions, many of them are computationally intensive. 
The Pareto Front represents a set of solutions where no 
single solution can be improved in one objective without 
causing a detriment in another. Essentially, it embodies the 
optimal compromise solutions, showcasing the delicate 
balance required in addressing conflicting objectives. 
Complementing the pareto front is the approximation set, 
which comprises a subset of solutions that approximates 
the pareto front. This set encapsulates a diverse array 
of solutions that provides decision-makers with a 
comprehensive view of the trade-offs inherent in the 
optimization problem.
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In our study, we refer to a non-dominated sorting procedure 
inspired from the hierarchical non-dominated sorting 
(HNDS) technique of Ref[6]. This advanced technique is an 
effective method for efficiently ranking solutions based on 
their dominance relationships. In this paper the bi-objective 
CODARP[5] is solved via a lexicographic optimization 
method involving a hierarchical ordering of objectives. The 
prioritization is performed using a lexicographic technique 
implemented by CPLEX. The assessment of the optimal 
fronts is based on a performance measure. The proposed 
evolutionary algorithm named evolutionary lexicographic 
algorithm2 (ELEXA) is guided by the prioritized order 
achieved by the lexicographic technique output. This 
algorithm relies on the hierarchical ranking procedure 
named HNDS to generate new populations with a faster 
and quick technique. A new perturbation and a crossover 
operator are implemented to provide good distributions of 
the trade-offs in the solutions space.

These operators are tailored for supporting the customized 
design of the problem under consideration. The set of 
approximate solutions selected by our evolutionary method 
are comparable to the ones provided by CPLEX. The 
results of ELEXA are also competitive as compared with 
the methods of the literature.

The structure of this study follows this order: A literature 
review is presented in section 2. Section 3 aims at defining 
the bi-objective Customer-Oriented problem. In section 4, 
the Evolutionary Lexicographic Algorithm is presented. 
The next section 5 presents an experimental study of 
the problem. Finally, a conclusion is reported in the last 
section 6.

2 RELATED WORKS
Recent advancements in on-demand transportation 

technologies[5,7-9] have led to significant innovations. These 
emerging technologies incorporate designs tailored to 
customer preferences[3], offering customization in the 
transportation of persons. These systems rely on customized 
mobile applications, enabling persons to plan their journeys 
based on specific needs, whether it’s moving between 
different zones or accessing multiple sites within a region.

Furthermore, these technologies incorporate inter- active 
elements on board vehicles, providing personalized trips. 
These advancements would significantly contribute in 
how people transportation is conceived and implemented 
within transportation systems, with increased emphasis on 
user experience, operational efficiency, and passengers’ 
satisfaction.

Bi-objective on-demand problems[10,11] with customized 
service quality design have received significant attention 
in transportation research. These problems aim to 
optimize vehicle routing plans while considering multiple 

objectives and meeting specific quality-of-service criteria.

Molenbruch et al.[11] investigated a patient transport 
system and proposed a bi-objective model for minimizing 
the total travel distance, while also considering the balance 
between operational costs and service quality. This trade-off 
was captured by an additional objective, aiming to minimize 
the overall ride time for users. Through real-life simulations, 
the study assessed the resulting costs for the service 
providers, while ensuring compliance with constraints such 
as the time windows ones and the maximum ride time.

Hybridized evolutionary methods are of growing interest 
for the researchers, see the existing related works[12-16]. 
Chassaing et al.[12] proposed a hybridized evolutionary 
algorithm combined with a local search-based method 
managing optimization techniques within dynamic 
probabilities for solving DARPs using a customized 
maximal ride time. Artificial instances[17] were enriched 
with special real-world features to better reflect the service 
providers requirements. A multi-objective dial-a-ride 
model aimed to optimize various objectives such as costs 
and user inconvenience[8]. The optimization process takes 
into account the vehicles and passengers’ constraints, 
including factors like their capacity and the time windows. 
To solve this problem effectively, three multi-objective 
evolutionary algorithms are employed. Moreover, Ren et 
al.[14] proposed a multi-objective optimization formulation 
of a transportation system, taking into account the preference 
ranks of requests for multiple boarding stops. The main 
goals of the model are the minimization of the travel costs 
and the number of unsatisfied requests, which serves as an 
indicator of the quality of service. To tackle this problem, 
a hybridized solution method is developed, combining a 
variable neighborhood search technique with a quick elitist 
non- dominated sorting genetic algorithm. The use of multi-
objective optimization methods and hybrid evolutionary 
algorithms demonstrated promising results in improving the 
overall service quality and efficiency of dial-a-ride systems. 
Further research is needed to explore new algorithms, 
optimization models, and decision-making frameworks 
to address the complexities of this problem domain and 
meet the evolving needs of transportation ser-vices in real-
life scenarios. In this regard, we are interested in exploring 
real-life resolutions that take into account customer issues. 
In our opinion, models addressing both the interest of 
the customer and the service provider under advanced 
quality specifications deserve new tailored evolutionary 
algorithms. This is what motivates this present study.

Furthermore, current approaches, though some- what 
effective, encounter with issues like inefficient resource 
allocation, long wait times, and difficulty adapting to 
customized changing demand. These challenges highlight 
the need for new solutions that can overcome these 
problems and simultaneously optimize multiple, sometimes 
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conflicting, goals. The shortcomings in current algorithms 
become particularly evident when dealing with the 
complexities of real-world on-demand mobility scenarios. 
Factors like user preferences require a more adaptable 
decision-making process.

By using multi-objective optimization methods and 
hybrid evolutionary algorithms, our goal is not only to 
address the inefficiencies in cur-rent systems but also to 
establish a more robust and responsive foundation for on-
demand mobility system operations. We aim to contribute 
to the advancement of intelligent transportation systems, 
improving the overall quality and efficiency.

3 THE BI-OBJECTIVE CUSTOMER-ORIENTED 
DARP

The bi-objective CODARP[5] involves the transportation 
of passengers with specific transportation demands. In 
the bi-objective CODARP, two objectives are considered 
seeking for optimizing the routing plans for vehicles 
while considering the requests, schedules, and vehicles 
constraints. The two objectives are the TTC and the TWT.

All the customers, who require transportation from an 
origin location to a destination, have their own maximum 
riding time, which represents the acceptable duration they 
are willing to spend aboard a vehicle. This maximum 
riding time is used to calculate new time windows based 
on specific customer’s parameters, thereby enhancing the 
quality of service.

A transportation request may involve multiple 
passengers, and a homogeneous fleet of dedicated vehicles 
is responsible for transporting these passengers. The 
vehicles start and end their routes at the depot. Each request 
in the problem corresponds to a pickup node i, where i 
belongs to the set {1...n}, and a delivery node j, where j 
belongs to the set {i+1...2n}. Here, n represents the total 
number of requests. Specifically, a request consists of a 
pickup node i and a corresponding delivery node i+n. The 
number of requests is equivalent to the number of pickups. 
The depot is represented by two nodes, namely 0 and 2n 
+1. The problem’s parameters are presented in Table 1.

Table 1. The Problem’s Parameters

Parameters Definitions

N Set of nodes, which includes the pickup and 
delivery sites.

v Index representing a specific vehicle.

m Total number of vehicles.

ti Service time required at

Bi
v Beginning of service at node i.

Ari
v Arrival time at node i

Wi
v Waiting time of vehicle v at node i.

The objective of this problem is the minimization of 
both the TTC, as defined in Equation (1), and the TWT, 
as presented in Equation (2), The TTC represents the 
operational costs associated with the routing of the available 
vehicles to fulfil a given number of requests. These 
operational costs are the sum of the routing costs of the arcs 
(i, j) that the vehicles traverse. The cost of an arc (i, j) is 
determined by the sum of the transit time on the visited arc 
and the service duration at the origin node, denoted as c(i, j).

In Equation (3), we present the expression of the waiting 
time Wi

v computation, being the difference between the 
beginning of service Bi

v and the arrival time Ari
v at node i.

4 THE HYBRID EVOLUTIONARY LEXICOGRAPHIC 
METHOD

This section is devoted to the presentation of the 
components of the hybrid evolutionary lexicographic 
method. In this method, we investigate a construction 
heuristic for the initial solution, a perturbation operator for 
constructing the population, and a crossover operator. These 
techniques are specially dedicated to adequately supporting 
the real-life nature of the problem.

Moreover, the ELEXA relies on a prioritized objective 
function which is provided by a lexicographic technique 
described in subsection 5.2. This priority enables the 
ELEXA to select the best solution and helps in the ranking 
process. This method performs a sorting routine on the 
offspring to generate the set of non-dominated solutions 
based on the prioritized objective function. These 
offspring solutions are ranked using the HNDS algorithm. 
The HDNS algorithm is based on eliminating unnecessary 
dominance comparisons. This ranking procedure 
sorts the solutions using the first objective. Then, the 
procedure calculates an order for each temporary sorted 
solution according to the second objective saving many 
comparisons and reducing the run time. In fact, it consists 
in discarding the dominated solutions of the first resulted 
rank and thus reducing the number of comparisons. 
The advantage of this technique is its speed to select at 
each step of comparison a non-dominated individual. 
Therefore, the HNDS approach is well suited since it is 
also based on the lexicographic ordering of the priorities 
given to the two objectives.

As described in Figure 2, the ELEXA relies on an 
archive saving non-dominated solutions provided at each 
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Figure 2. An overview of the ELEXA.

generation. The set of variables used in the algorithm are 
indicated in Table 2.

The algorithm returns the archive reduced by applying 
the sorting method to preserve only the Pareto front. The 
method applies an elitism by incorporating the current 
non-dominated offspring in the new population, which 
is completed by the selected dominated solution and its 
perturbed individuals.

To generate the population, an initial solution is constructed 
by the mean of the insertion heuristic (see subsection 4.1). 
This initial solution is then perturbed by the mean of a 
perturbation operator (see subsection 2) producing np 
individuals (lines 10-14). Then a crossover operator (see 
subsection 4.3) is applied to each individual (line 16). 
These offsprings are sorted and ranked using the HNDS 
algorithm. The individuals of the Pareto front are then 
archived. These latter are added to the extended archive (line 
19). As the non-dominated solutions are separated from 
the dominated ones, they are saved in two sets namely 
H and T respectively. The non-dominated solutions are 
added to the extended archive and incorporated in the 
new population (line 9) for the next generation. Steps are 
provided in Algorithm 1. (Table 3)

Furthermore, a best solution is selected from the dominated 

Table 2. The Algorithm’s Parameters

Parameters Definitions

max Maximal number of iterations.

np Total number of individuals.

P Population.

init Initial solution.

pr Priority of the objective function.

A Extended archive set.

H Set of non-dominated solutions.

T Set of non-dominated solutions.

solutions saved in T (line 21). 

selection involves the evaluation of the solutions according 
to the current priority. The best one is used for the next 
iteration in the evolutionary algorithm. Consequently, the 
new population of the next generation consists of the resulted 
non-dominated solutions in the set H and new individuals 
produced by perturbation. With this regard, ELEXA 
benefits from elitism technique of the HDNS. However, 
before iterating, the priority is exchanged assuming another 
lexicographic order for the evolutionary search. When 
the maximum number of generations (max) is reached, 
the algorithm keeps the ranked set of solutions from the 
reduced archive obtained by applying the HNDS sorting 
algorithm.

4.1 The Construction of the Initial Solution
In order to create the initial solution, we refer to the heuristic 

method as described in Ref[4]. This insertion heuristic initially 
organizes the requests in an ascending order based on their 
earliest ser- vice times. It then selects an appropriate vehicle 
by considering factors such as its capacity and total duration, 
ensuring its availability for the task. The requests are placed 
into the tours of the vehicles, ensuring the fulfilment of all 
constraints and adherence to the designated time schedules. 
If a request is successfully assigned to a vehicle, the relevant 
parameters associated with the vehicles, requests, and time 
schedules are appropriately updated.

To free up some capacity in the vehicles, the deliveries 
with the earliest service times are ensured, and all the 
corresponding updates are made. This process is also executed 
when some violations of the maximum riding time occur 
during the insertion of a new request into the tour. Addition- 
ally, a vehicle is marked as non-available once its maximum 
total tour duration is reached. Finally, the process continues 
until all the requests are satisfied.

4.2 The Population Generation in ELEXA
To generate the population, a new perturbation operator 

is proposed. The operator selects a request with a waiting 
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Table 3. Algorithm 1 The Evolutionary Lexicographic 
Algorithm

1: Input max, np

2: Output Best set

3: init ← insertion heuristic()

4: nb indiv ← 0

5: pr ← pr TTC

6: A ← ∅

7: H ← ∅

8: for (nb iter = 1) do max iter

9: P ← H

10: repeat

11: indiv ← perturbation(init)

12: Add(P, indiv)

13: nb indiv ← nb indiv + 1

14: until nb indiv = np − |H|

15: for (all indiv ∈ P) do

16: crossover(indiv)

17: end for

18: H ← HNDS(P)

19: A ← A ∪ H

20: T ← P \ H

21: init ← select best(T, pr)

22: Exchange priority(pr)

23: end for

24: Best set ← HNDS(A)

time which occurs either at the pickup or the delivery node, 
and then moves this request to another route. This operation 
involves the computation of time windows, which results 
in a new beginning of service. Algorithm 2 presents the 
main steps of the perturbation. (Table 4)

Table 4. Algorithm 2 the Perturbation Procedure

Algorithm 2

1: Given a solution S;

2: Save in a list L the set of requests having waiting times;

3: Save in a list R the set of requests without waiting time ;

4: if L is not empty then

5: Select a request r from L;

6: Compute customized time windows for r;

7: else

8: Select a random request r from R;

9: end if

10: Seek for a new position in another route;

11: Move the request r to the new route;

12: Update the time schedule in S;

13: Return obtained solution;

The procedure starts by separating requests into two 
distinct lists (lines 2 and 3): L, which stores requests 
associated with waiting times, and R, which contains requests 
without waiting times. Next, it evaluates whether the list L 
contains any requests with waiting times. If the list is not 
empty, the procedure selects a request from L and computes 
customized time windows at line 6 for that particular 
request. In cases where L is empty, the algorithm randomly 
selects a request from list R at line 8. Following the selection 
process, it seeks an optimal position (line 10) within another 
route to accommodate the chosen request. Upon identifying 
a suitable position, the procedure relocates the request to 
this new route and proceeds to update the time schedule 
(line 12) within the solution S accordingly. The final step 
involves returning the new solution obtained through the 
application of this perturbation procedure.

4.3 The Generation of Offsprings
The offspring solutions are created basing on the 

crossover procedure which is inspired from the one 
provided in Ref[4]. It enables the offspring solution to inherit 
the beneficial characteristics from both parents, particularly 
the high level of quality of service achieved during the 
previous perturbation phase. During the crossover process, 
two selected routes originating from the same individual act 
as parents. This process involves identifying two positions 
on the two routes that correspond to the first pickup nodes 
with similar or closely aligned starting service times. Next, 
the procedure removes the sequences of requests from 
the routes that fall out- side the designated cut points in 
each parent. The exchange of the two resulting sections 
in the two routes is performed while maintaining the 
same positions in the time schedule. Finally, in the final 
phase, the recombination proceeds by inserting the deleted 
requests into the resulting solution, aiming to retain their 
original positions in the parent while ensuring the problem’s 
constraints.

5 EXPERIMENTAL STUDY
To demonstrate the effectiveness of the ELEXA, we 

conduct a comparative analysis involving preliminary 
experimentation. Thus, we use CPLEX, a widely used 
mathematical solver, to obtain optimal fronts when varying 
the priority. This part of the study is important since it 
demonstrates the behavior of the solutions within two 
hierarchical lexicographic orders.

To assess the optimal fronts and fix the suitable lexi-
cographic order for the ELEXA, we refer to the C-metric 
performance tool[18]. This performance metric determines 
the proportion of solutions of in a preliminary defined 
approximation set which are dominated by or equal to the 
solutions in a competing approximation set.

The resulting outputs of ELEXA are then com-pared with 
the results obtained with of methods from the literature. In 
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this regard, we are able to highlight which output of each 
method is meaningful when addressing the interest of the 
customer and the transport service provider.

5.1 The Dataset Used for the Experimentation
Real-life cases of transport on-demand, proposed by 

Ref[19], are employed for conducting tests. These instances 
reflect realistic scenarios, where the locations are based 
on the GPS positions of the nodes and the actual distances 
between them. The transportation network density varies 
across different instances, and so does the distribution of 
the customers over the space. These instances are designed 
for real-life situations and specific condi-tions. The 
distances between the pickup and destination points for 
the customers are distributed, with the majority of the 
transportation requests (75%) representing a distance of 
between 30km and 70km. The time windows depend on 
both the pickup and destination locations. The size of these 
time windows varies depending on the specific customer. 
The maximum riding time and the travel distance of the 
request is an individual requirement of each customer. The 
number of customers at a site can range from 1 to 4. All the 
vehicles have an average speed of 1.33 km per minute. The 
maximum duration for a vehicle’s tour is set at 480 min, 
and the vehicles can only carry 8 passengers at a time. The 
lexicographic objective function order

The lexicographic method was introduced by Dolgui 
et al[1]. It is a non-scalar approach used to handle multiple 
objectives in decision-making. This method organizes the 
objectives based on a specified priority order determined by 
the decision-maker. It establishes a ranked list of objectives, 
sorted in the decreasing order of their importance. When 
solving a problem using the lexicographic method, each 
objective is optimized one at a time, starting from the highest-
priority objective and proceeding to lower-priority objectives. 
The method ensures that once an optimal solution is found 
for an objective, only solutions that are also optimal for the 
higher-priority objectives are considered for the remaining 
objectives. This hierarchical approach guarantees that the 

resulting solution adheres to the desired priority order.

This lexicographic technique is implemented in the 
CPLEX tool. We explore two variations of the lexicographic 
method: LexTTC and Lex- TWT. The LexTTC version 
prioritizes the TTC as the first objective, while the Lex- 
TWT version gives priority to the TWT. Experiments are 
conducted using 10 On-Demand Transport problems. These 
problem instances were solved using the CPLEX software 
with a computation duration of maximum two hours.

In order to well assess the produced solutions in the Pareto 
front, we use a performance measure. The C-metric assigns 
a value within the range [0, 1] to the ordered pair (A, B) and 
is defined by Equation (4).

If the value of C(A, B) is 1, it indicates that all the solutions 
in the set B are either dominated by or equal to the solutions 
in the set A. Conversely, if C(A, B) is 0, all the solutions 
in B strictly dominate the solutions in the set A. It is thus 
important to compute both orderings in this context.

Table 5 presents the coverage of the two sets of solutions 
obtained with LexTTC and LexTWT. It provides an 
overview of the problem instances, including their names, 
the number of requests (n), and the number of vehicles (m) 
involved. Let A and B represent two approximations of 
the Pareto set. Let us consider A as the set of solutions of 
LexTTC and B as the set of solutions of LexTWT.

According to Table 5, prioritizing the TTC within the 
LexTTC method yields superior compromises between the 
service provider’s and the customer’s interests. Specifically, 
there are five cases where C(B, A) equals zero, indicating 
minimal travel costs, while there are only two cases where 
C(A, B) equals zero when the waiting time is prioritized. 
This demonstrates that prioritizing TTC leads to solutions 
with a high level of quality of service, even if the TTC is 
emphasized. The lexicographic resolution of the bi-objective 
model shows promising solutions. When the TWT is 
prioritized, it yields the best outcomes from the customer’s 
perspective. However, preliminary experiments suggest that 
prioritizing the TTC leads to better compromises between 
the travel costs and the waiting times.

5.2 Comparison Between ELEXA and LexTTC
The lexicographic resolution of the bi-objective problem 

demonstrated its combinatorial nature, as evidenced by the 
extensive computational time required for the exact method 
executed by CPLEX on the previously analyzed instances, 
ranging from one to two hours. This computational 
complexity served as a motivation for us to develop a meta-
heuristic method capable of quickly generating solutions of 
reasonable quality. In this regard, we opt for an evolutionary 
method, which is widely recognized for its effectiveness 

Table 5. The Coverage of the Approximate Sets

Instances n m C(A,B) C(B,A) Coverage

d75 10 2 0.33 0 A strictly dominates B

d92 17 2 0.30 0.83 No coverage

d93 20 2 0 0.66 B strictly dominates A

d94 23 2 0.25 0.14 No coverage

d55 28 4 0.43 0 A strictly dominates B

d52 29 4 0.28 0 A strictly dominates B

d10 34 4 0.25 0.14 No coverage

d39 38 6 0.60 0 A strictly dominates B

d70 39 6 0 0.50 B strictly dominates A

d82 39 6 0.60 0 A strictly dominates B
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in addressing multi-objective optimization problems. 
Hence, we will focus on testing this method exclusively 
on the instances that were previously analyzed using the 
lexicographic exact resolution discussed previously.

Given the dominance of the results produced by the 
exact resolution when the TTC is prioritized, this objective 
function is used as an evaluation criterion for the ELEXA. 
The obtained results are assessed when comparing with 
optimal fronts of the LexTTC resolution.

To perform experiments using the evolutionary 
algorithm, two parameters are considered: the population 
size and the maximal number of iterations. These 
parameters were determined through preliminary tests. 
Thus, we set the population size to 100 and ran the 
evolutionary algorithm, named ELEXA, for 1000 iterations.

Figure 3 displays Pareto fronts obtained by the ELEXA 
within some problems’ instances. These fronts are 
compared with the optimal solutions generated by the exact 
method LexTTC solved with CPLEX.

According to results observed in Figure 3, ELEXA yields 

Figure 3. Pareto fronts obtained for the (A) d92, (B) d93, (C) d94, (D) d10, (E) d70, and (E) d82 instance.

A B

C D

E F

promising results when compared to the exact solution 
provided by LexTTC. The solutions obtained by ELEXA 
show a good performance in terms of trade-offs between the 
objectives.

For instances with a larger number of requests (n>30). 
ELEXA outperforms LexTTC by generating solutions 
that are closer to the optimal ones. Additionally, ELEXA 
demonstrates its effective- ness in providing competitive 
solutions, which is consistent with the coverage observed 
in LexTTC (refer to Table 2 in section 3). This behavior is 
particularly notable for the d10 instance, where no coverage 
is found between LexTTC and LexTWT. The ELEXA 
provides a greater diversity of well- distributed solutions on 
its Pareto fronts com- pared to the exact method LexTTC as 
for the instances d75 and d55. Moreover, for the case of d93 
in Figure 3B, a significant majority of the solutions generated 
by ELEXA dominate those of LexTTC. This improvement 
in solution quality is especially marked in cases where the 
coverage is observed in LexTWT. The performance of the 
ELEXA can be attributed to two key factors which are the 
incorporation of elitism, dominance rules in the algorithm 
design, its customized operators and the rapid convergence of 
ELEXA to Pareto fronts.
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Table 6 reports the CPU (Central Processing Unit) 
times per minutes (m) required to solve the problem using 
the ELEXA and the LexTTC methods.

As shown in Table 6, ELEXA proves to be significantly 
faster than the exact method named LexTTC. The results 
highlight that ELEXA requires considerably less time, with 
execution times ranging up to 20 minutes, in comparison to 
CPLEX, which can take up to 2 hours. Table 6 illustrates 
that the ELEXA reduces the execution time by at least one 
hour.

With a large number of requests (n>30). This reduced 
time requirement allows ELEXA to con- verge rapidly, 
resulting in better Pareto fronts in terms of both diversity 
and convergence.

5.3 Comparative Study Between ELEXA and A State-
of-the-Art Method

To well assess the behavior of our approach when 
addressing the bi-objective CODARP, a comparison is 
performed regarding another mono-objective method 
applied for the same trans- port on-demand problems. The 
mono-objective approach is named evolutionary local search 
(ELS) of Ref[12]. In this method, the objective is to minimize 
the TTC. To be able to compare between the results of 
the mono-objective method named ELS and ELEXA, the 
extreme solutions in the Pareto optimal set provided by the 
ELEXA are first calculated. An extreme solution corresponds 
to the best solution found for each objective function. Thus, 
for each instance, we have performed a total of 10 executions 
for the ELEXA run for 1000 iterations. From this total of 10 
values, we calculated the mean of the best objective values for 
the TTC and the TWT. In order to provide a deeper analysis 
of the results, further problems are selected from the data set 
of instances of Chassaing [19]. Instances with a total number 
of requests up to 60 are provided for a comparison with the 
state-of-the-art method. The results shown in Table 7 report 
for each instance, the values (minutesof TTC and TWT 
related to ELS, and ELEXA successively. Besides, Gaps 

Table 6. Computational Times

Instances LexTTC CPU(min) ELEXA CPU(min)

d75 35.22 7.28

d92 40.37 11.43

d93 55.12 15,20

d94 66.53 15.21

d55 70.23 17.66

d52 86.14 18.08

d10 91.33 18.14

d39 104.47 18.62

d70 113.52 19.04

d82 118.17 19.78

between values are also reported in the table. Negative 
gaps (%) indicate improved values either in TTC or 
TWT.

Regarding results of TTC and TWT in Table 7, the 
ELEXA indicates competitive results when comparing 
with ELS. Good enhancements are marked in term of TTC 
and TWT. Even for the cases which are not improved by 
ELEXA, the positive gaps are up to %5 in TTC. As we 
observe in TWT, the positive gap between values in ELS 
and ELEXA is up to 10% relating to the solutions where 
ELS is better than ELEXA. However, the negative gaps 
indicating improved values of TWT in ELEXA are up 
to 24%. This output emphasizes the contribution of the 
customized design in the bi-objective problem even when 
TTC is prioritized.

Furthermore, we deduce that globally ELEXA outperforms 
ELS. In Figure 4, the total number of improved cases in 
term of TTC and TWT is depicted for each method. In 
fact, in term of TTC, 17 improved cases are produced by 
ELEXA regarding 15 cases out of 32. However, ELEXA is 
more effective in term of TWT for 19 instances as compared 
with 13 solutions in ELS. This output indicates that ELEXA 
is able to provide good tradeoffs between TTC and TWT 
for decision making systems. Despite the mono-objective 
nature of ELS minimizing TTC, the results demonstrate 
that mono-objective approach may excel in this specific 
objective, but they might not achieve the same level of 
balance when handling multiple objectives simultaneously.

When observing cases where ELEXA outperforms the 
mono-objective method, we emphasize 7 good compromises 
between TTC and TWT as for problems d75, d92, d52, d39, 
d36, d11, d81. These solutions are produced by ELEXA 
where both TTC and TWT are improved as compared by 
ELS. This leads us to deduce that the bi-objective method 
might be more interested when seeking good solutions 
satisfying both the service provider and customers. These 
findings offer valuable insights for decision-makers in 
demand-responsive passenger transportation. While the 
mono-objective method ELS is useful, the advantages and 
overall quality of solutions provided by ELEXA might 
be more relevant in contexts where simultaneously 
optimizing multiple objectives is crucial for user satisfaction 
and operational efficiency. Addressing the problem 
within ELEXA is promising by the use of the prioritized 
lexicographic order for TTC and the elitism process 
provided by the incorporation of the HDNS algorithm. The 
ELEXA’s effective- ness in managing multiple objectives 
simultaneously highlights its potential for decision-making 
in real-world transport scenarios. Moreover, the instances’ 
characteristics seem to influence the relative performance 
of each method. This variance in performance emphasizes 
the importance of adaptive algorithms when dealing with 
diverse real-world transportation scenarios.
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Table 7. Obtained Results in ELS vs. ELEXA

Instances m n
TTC(min)

GAPTTC (%)
TWT(min)

GAPTWT (%)
ELS ELEXA ELS ELEXA

d75 2 10 150.91 144.47 -4.26 398.54 345.11 -13.41 

d92 2 17 347.01 337.46 -2.75 250.08 215.05 -14.01 

d93 3 20 418.76 411.51 -1.73 177.34 180.13 1.57 

d94 2 23 352.25 345.01 -2.05 153.79 163.22 6.13 

d55 5 28 1,516.71 1529.15 0.82 202.63 165.54 -18.30 

d52 4 29 1,607.74 1,601.36 -0.4 70.81 60.42 -14.67 

d10 4 34 1,341.02 1,400.75 4.45 377.87 344.15 -8.92 

d39 6 38 2,030.44 2,000.23 -1.49 524.72 399.33 -23.90 

d70 6 39 2,006.05 2,005.40 -0.03 144.29 149.44 3.57 

d82 6 39 1,842.84 1,866.01 1.26 95.27 99.75 4.70 

d08 7 42 1,857.35 1,791.42 -3.55 482.47 423.52 -12.22 

d36 6 42 2,139.52 2,134.90 -0.22 390.74 299.24 -23.42 

d43 6 43 2,002.15 1,992.16 -0.5 189.57 203.43 7.31 

d01 7 46 2,396.55 2,294.11 -4.27 212.5 229.41 7.96 

d11 7 47 2,538.18 2,433.55 -4.12 141.18 122.12 -13.50 

d90 6 51 1,133.45 1,155.87 1.98 355.15 351.66 -0.98 

d17 8 52 2,861.93 2,986.76 4.36 234.73 256.74 9.38 

d84 8 52 2,368.34 2,477.01 4.59 312.03 271.13 -13.11 

d81 7 53 2,456.13 2,358.38 -3.98 333.38 291.45 -12.58 

d96 11 53 3,593.60 3,503.11 -2.52 279.91 306.23 9.40 

d07 8 54 3,082.80 3,102.23 0.63 167.8 174.33 3.89 

d87 8 54 2,714.31 2,800.18 3.16 339.88 310.46 -8.66 

d47 7 55 2,636.07 2,599.00 -1.41 301.51 325.55 7.97 

d48 8 55 3,083.19 3,120.46 1.21 418.27 377.42 -9.77 

d61 8 55 2,855.09 2,896.64 1.46 342.11 358.36 4.75 

d12 9 56 3,614.27 3,527.89 -2.39 341.82 365.12 6.82 

d20 9 56 3,567.32 3,633.05 1.84 394.84 371.63 -5.88 

d30 8 56 2,678.58 2,800.63 4.56 286.48 241.44 -15.72 

d53 7 57 2,484.60 2,391.08 -3.76 104.83 114.42 9.15 

d05 9 58 3,393.09 3,420.12 0.8 400.98 319.11 -20.42 

d13 9 59 3,183.19 3,200.20 0.53 441.76 368.34 -16.62 

d06 10 60 3,412.34 3,444.12 0.93 523.99 414.09 -20.97 

Figure 4. Total number of improved results produced by ELEXA and ELS.
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Additionally, exploring hybrid approaches that combine 
strengths from both mono and bi- objective methods might 
offer a promising direction for future optimization techniques. 
The application of bi-objective optimization techniques 
like ELEXA prioritizing Travel cost can offer good trade-
offs between different objectives, empower decision-makers 
to tailor transportation solutions that align more closely with 
users’ preferences and needs.

6 CONCLUSIONS
This paper addresses a customer-oriented trans- port on-

demand problem using a bi-objective customized design. 
In this problem, TWT and TTC are considered as separate 
objectives. A lexicographic exact resolution is applied to 
determine an appropriate priority ordering for these two 
criteria with the aim of finding high-quality solutions. To 
address more real life on-demand transport problems, the 
study proposes a bi-objective optimization method based 
on an ELEXA. It incorporates optimization techniques 
tailored for supporting advanced designs of transportation 
services and an effective dominance sorting method to 
generate new populations of solutions with a faster and 
effective technique. Experimental results demonstrate that 
ELEXA reaches a promising performance on realistic on- 
demand instances while maintaining reasonable CPU time 
requirements. Future experiments could be conducted on 
a broader range of on demand transport problems, and the 
algorithm could be compared with other well-known multi-
objective optimization methods. Future research could 
focus on enhancing ELEXA by incorporating adaptive 
mechanisms or hybridization with other meta-heuristic 
techniques. These improvements might aim to better handle 
diverse transportation scenarios, considering varying 
passenger demands and route complexities.

Furthermore, future works should extend the application 
of bi-objective optimization approaches to multi-modal 
transportation systems. This could involve optimizing 
passenger transportation across various modes. Besides, it 
is interesting to conduct extensive experimental validations 
using diverse data sets and benchmark problems derived 
from real-world transportation scenarios. Comparative 
studies with newly developed algorithms or modified 
versions could provide deeper insights into their relative 
performance and robustness. Additionally, the application 
of bi-objective optimization approaches to multi-modal 
transportation systems holds promise for logistics across 
different production units or plants. This approach could 
yield substantial benefits in terms of resource optimization 
and operational efficiency. To conclude, future studies in on- 
demand transportation systems should prioritize rigorous 
experimental validations using diverse data sets and real-
world benchmark problems. Comparative analyses against 
other optimization methods or newly developed algorithms 
would offer valuable insights into the applicability, 
performance, and adaptability of these approaches.
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HNDS, Hierarchical non-dominated sorting
TTC, Total travel cost 
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