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Abstract
Background: Image stitching is the procedure of combining two or more pictures having the same 
feature point location information into a panoramic image, which is useful in target discovery, seabed 
research, and military applications. Most of existing underwater picture stitching technology makes 
use of well-lit photos, however natural light gradually diminishes during propagation of underwater 
autonomous submersibles plunge further into the sea. When the image focuses on the regions of 
lighting concentration and the larger dark, image details are lost and feature points are not matched, 
the perspective transformation matrix obtained does not reflect the mapping relationship of the 
entire image, resulting in a poor stitching effect and making it difficult to meet practical application 
requirements. 

Objective: This study aims to obtain underwater images with a good enhancement effect and improve 
feature point matching image.

Methods: An adaptive image enhancement method based on adaptive light source optimization 
is proposed in this paper, underwater photos are preprocessed to enhance images for the feature 
registration. 

Results: The experimental consequence indicate that the improvement algorithm can improve picture 
standard with better detail performance and color recovery by preprocessing submerged photographs.

Conclusion: It is accomplished that high exactness for images stitching by adding the feature points of 
the enhanced image for feature alignment.

Keywords: image stitching, light source optimization, underwater image enhancement, feature 
matching
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1 INTRODUCTION
Panorama is a seamless wide-view image created 

by stitching together many narrow-view photos of 
overlapping sections in the same scene. When the image 
is stitched, a source image is chosen as the reference 
image, the adjacent image is converted to match the 
reference image's coordinate system, and the single 
response between the adjoining images is calculated 
using the transformation matrix to create the panoramic 
image. Image stitching has emerged as an active research 
field in image processing in recent years, playing an 
essential role in computer vision and computer graphics 
applications. It is widely used in Picture rendering, 
medical imaging, image stabilization, 2D and 3D 
image mapping, satellite imaging, soil moisture balance 
evaluation, disaster prevention and control, and other 
applications. Furthermore, Image stitching supports 
hyperspectral remote sensing technology for autonomous 
undersea vehicles (AUV). 

Image stitching technology is currently widely 
employed for underwater exploration, and it has 
been used for navigation, localisation of locations of 
interest, as well as detection of temporal changes in 
conjunction with the usage of AUV or remotely operated 
vehicles (ROV). Because of the limits of the maritime 
environment, pictures are invariably vulnerable to 
different interference factors during transmission, making 
target recognition extremely difficult. Underwater 
environmental conditions are harsh, such as particle 
suspension caused by scattering, etc., marine flora and 
fauna activities, light absorption, refraction, and remote 
operation difficulties, etc., resulting in image acquisition 
platform instability, challenges to the scene near and far, 
and changes in relative velocity.

It is necessary to consider the constraints that must 
be satisfied when estimating the target position at 
different levels in order to ensure the acquisition of high 
quality image data in real time and in a stable manner. 
In order to improve image quality and stitching success, 
this paper uses AUV-guided light source optimization 
methods to pre-process underwater images to improve 
image quality and stitching success. The major 
contributions are summarized below.

● An enhancement algorithm based on light source 
optimization guided filtering is proposed in order to 
obtain underwater images with a good enhancement 
effect.

● An improved feature point matching image stitching 
method is developed in order to raise the numeral of 
image matching pairs and accomplish. High image 

stitching exactness.

2 MATERIALS AND METHODS
2.1 Related Work

Low-illumination image enhancement algorithms 
primarily improve an image's overall contrast and 
brightness by increasing the brightness of the image's 
dark region and suppressing the grayscale value of the 
image's overly bright region[1]. Low-illumination image 
enhancement algorithms have been evolving for a long 
time as a classic problem in the field of digital image 
processing. Retinal theory, grayscale transformation, and 
other techniques are commonly used to improve low-
illumination color images.

Retinex theory is a traditional way of optical image 
enhancing microscopy. Multi-scale retinex (MSR)[2] and 
multi-scale retinex color restoration (MSRCR)[3] are 
representative retinal algorithms; however, these algorithms 
are prone to color distortion and over-enhancement. Hao 
et al.[4] proposed a low-light enhancement model based 
on a simplified Retinex model. A fast edge-preserving 
filter is introduced to estimate the illumination mapping, 
resulting in an intermediate enhanced image. Building on 
this foundation, a fusion-based low-light enhancement 
model is proposed, which effectively illuminates 
the image and suppresses imaging noise. The model 
performs well in various lighting conditions and avoids 
overor under-enhancement, enabling seamless fusion 
of the original image with the intermediate enhanced 
image. Galdran[5] suggested a Retinex-based light map 
estimation technique. First, the initial photogram image 
is estimated by calculating the maximum value of 
channels R, G, and B; the initial image is then refined by 
anisotropic filtering; the illumination map image is then 
processed with an adaptive gamma function; and finally, 
the reflection image is calculated using the retinal model 
and de-sharpened to improve detail.

The gamma correction function is a typical grayscale 
transformation technique. The implementation is 
straightforward, but it generally necessitates manual 
parameter adjustment based on the features of low-
illumination pictures, and the images cannot be 
adaptively improved. Bai et al.[6] introduced a new 
method that consists of four stages: pixel intensity 
center regionalization, histogram global equalization, 
histogram local equalization, and multi-scale fusion. The 
method utilizes the pixel intensity center regionalization 
strategy to concentrate the image histogram onto the 
entire image. By performing global equalization of the 
histogram, color correction is performed based on the 
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features of each channel. To improve image contrast, 
we utilized double interval histogram local equalization 
based on peak mean for each channel. Additionally, 
we performed dual image multi-scale fusion, color 
correction, and contrast enhancement using contrast, 
saliency, and exposure weights.

Intelligent algorithms have rapidly evolved and been 
used to picture augmentation in recent years. Cristin 
et al.[7] suggested an adaptive picture enhancement 
technique based on visual saliency and introduced the 
cuckoo search algorithm and dual gamma correction 
function in (HSI) color space. This approach increases 
the overall brightness of the image by determining the 
ideal settings for diverse scenarios. Furthermore, a 
luminance-keeping dual histogram creation approach 
based on visual prominence is presented to improve the 
contrast of the region of interest while maintaining the 
image's brightness. Finally, the image is altered using an 
enhanced saturation stretching algorithm to improve the 
image's color information. Li et al.[8] improved the overall 
brightness of the image by combining the suggested 
adaptive particle swarm optimization technique with 
gamma correction, taking into account the features of 
low-illumination color photographs. Furthermore, the 
adaptive stretching function is employed to process the 
image in order to increase the saturation. This approach 
enhances the contrast of a low-light color image, prevents 
color distortion, and successfully improves the brightness 
of the image, offering greater detail improvement while 
keeping the image's naturalness.

The quality of the photographs is improved by 
using clever algorithms to analyse shimmering images. 
The complexity of the enhancing algorithm has 
unquestionably risen with the development of intelligent 
algorithms. Algorithms for picture filtering are further 
used for image enhancement. A global optimized linear 
plus window tone mapping algorithm was put out by 
Ancuti et al.[9] and it presents a novel high dynamic range 
compression technique using local linear filtering. This 
method improves the image with a great dynamic range. 
The noise in the micrographs must not be overlooked. 
Azimpour et al.[10] suggested a variational strategy for 
maximizing the posterior estimate for picture denoising 
that can increase Gaussian noise filtering performance. 
Rasti et al.[11] suggested a variational approach for 
estimating the posterior (MAP). This approach uses 
geometric knowledge to create a regularization function 
and a nice denoising result picture.

Rather than capturing scintillating photos, these 
algorithms are typically evaluated using images from 
publicly available databases. Because of the noise of 
the dark region in the underwater photos really acquired 
by the underwater autonomous underwater vehicle, the 

enhancement algorithm may magnify the noise of the 
dark area at the same time as the brightness of the image, 
influencing subsequent splicing. Furthermore, this 
research employs enhancing approaches to preprocess 
and execute picture stitching. The image stitching 
performance will suffer if the enhancement algorithm 
is very sophisticated. As a result, we describe an 
adaptive picture enhancement approach based on AUV-
guided light source optimization. The V component 
is extracted first using color space transformation, 
followed by the illumination component using a multi-
scale guide filter. The enhanced illumination-reflection 
model's enhancement function is utilized to rectify the 
light component and incorporate adaptive variables. 
The light components before and after calibration are 
fused together and then translated to RGB color space. 
The technique provides quick adaptive improvement 
of underwater images, resulting in higher quality and 
more detailed underwater images that may be used for 
picture stitching later on. Figure 1 depicts the algorithm 
architecture used in this paper.

The rest of this paper is structured as follows. 
Section 3 describes the suggested underwater picture 
enhancing algorithm. The stitching approach based 
on the suggested improvement algorithm is described 
in Section 4. Section 5 presents the experimental 
data as well as a commentary. Section 6 provides the 
conclusion.

2.2 The Proposed Underwater Image Enhancement 
Method
2.2.1 Space Conversion

HSV color space is a visual representation of color 
hue, vividness, and brightness that allows for easy 
color comparison. Saturation (saturation) and Value 
(luminance)[12]. Hue defines which side of the color 
spectrum is skewed toward red, green, and blue, with 
low hue tilted toward red, mid hue tilted toward green, 
and high hue tilted toward blue. Saturation influences 
the color composition of the color space; the higher 
the saturation, the deeper the color, and the lower the 
saturation, the lighter the color. Brightness regulates the 
degree of lightness and darkness in the color space; the 
higher the brightness, the brighter and more vivid the 
color; and brightness controls the degree of lightness 
and darkness of the RGB color combination. The 
mathematical formula is as follows:
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Figure 1. Algorithm flow of this paper.

2.2.2 Optimization of V-component Processing
When compared to the distribution of gray level in 

an ordinary clear image, the distribution of gray level 
in a low-light image is more concentrated in the lower 
gray level area, and the dynamic range of gray level is 
smaller, so the low-light image enhancement algorithm 
focuses on the enhancement of the image's low gray 
level area and uses an efficient method to expand the 
dynamic range of gray level. And, because of the global 
enhancement algorithm strategy method used, when the 
low gray region is improved, the high gray area is also 
increased, making it simple to overenhance the old high 
gray area. The light reflection model presented by Garcia 
et al.[13] is enhanced in this study, and the V-component 
is optimized by developing the model. As stated in 
equation, the Lighting-Reflection Model indicates that a 
picture is a result of the lighting and reflection qualities 
of a particular scene (5).

Where f(x, y) is the camera's perceived picture, i(x, y) 
is the illumination, and r(x, y) is the reflection function 
It can alternatively be represented as the product of its 
value and the gain factor g(x, y), plus an offset term o(x, 
y), depending on the camera specifications.

The smoothing function may be used to mimic the 
multiplication factor cm(x, y) = g(x, y) × r(x, y) induced 
by the light source and camera sensitivity. The smoothed 
picture attempts to determine the degree to which the 
light field and camera sensitivity impact each pixel. A 
Gaussian smoothing approach is presented to mimic 
non-uniform lighting, and the resultant picture may be 
rectified by point-by-point segmentation of the smoothed 
image, resulting in the ideal image estimate of.

Where δ denotes the normalization constant used 
to restore the overall brightness of the picture, and fs 
denotes the image after Gaussian smoothing.

Since the light acquired by the AUV is inhomogeneous, 
different portions of the picture must be processed owing 
to the varying brightness they receive. A model is created 
using homomorphic filtering for the low-frequency 
section of the picture, which may assume that the light 
factor fluctuates continuously over the field of vision, 
and low frequencies can be derived from the image's 
Fourier transform (ignoring the offset term)[14]. To carry 
out the above procedure, take the logarithm of Equation 
(6) and transform the multiplicative effect to an additive 
effect as shown below.

Equation (8)'s Fourier transform produces.

Where F(u,v), Cm(u,v) and R(u,v) are the Fourier 
transforms of ln f(x, y), ln Cm(x, y) and ln R(x, y), 
respectively. For the high frequency part of the 
illuminated image, the high-pass homomorphic filter is 
introduced as:

Where  w 0 i s  the  cutoff  f requency,  s  i s  the 
multiplication factor, and ρ is the offset term. The low 
frequency part of the illumination is represented by 
multiplying the Fourier transformed image with the 
high-pass homomorphic filter as follows:
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The filter may not only make the image's illumination 
more uniform, but it can also enhance the detail aspects 
of the shadow region.

A high-power LED light source is used in this work. 
The underwater spectral amplitude-illuminometer 
measures from 400 to 700nm, has a spectral resolution 
of 1nm, and a peak wavelength of around 500nm. 
Through sealing, it can operate normally to a depth of 
5m underwater. The spectrum illumination meter is 
always situated at the primary optical axis of the light 
source during the underwater measuring procedure; the 
distance between the two is approximately 0.5m, and it 
is directly facing the light source. Figure 2 depicts the 
lighting optimization method.

2.2.3 Gamma Edge Correction
As a result of the above steps, an optimized light map 

can be obtained, but the underwater light map still has 
the problem of low contrast. Gamma correction is a non-
linear algorithm to adjust the image brightness, which 
is often applied to enhance the image quality[15], and the 
mathematical expression is:

Where Iin and Iout indicate the input image and output 
image brightness chel, A and γ are used to adjust the 
correction range, Figure 3 indicates the relationship 
between the correction value and the value change, from 
the curve can be seen, a=0, the output image becomes 
brighter, b=0, the output image becomes darker.

2.2.4 Red Channel Color Compensation
The light image with optimized enhancement of 

the light source gives the corrected underwater image 
according to Equation (11). As seen in Figure 1, the 
red light decays the fastest, and the blue-green light 
decays the slowest, resulting in underwater images that 
are mostly blue-green. Easily absorbed, the image red 
channel brightness is low, while the green channel is 
relatively better preserved. Therefore, this paper uses the 
method of red channel color compensation to improve 
the image color distortion problem.

Let x be the image position, first extract the RGB 
three channels of the color image, then accumulate the 
image grayscale values in the channels in turn, finally 
iterate the number of each element of the image, and 
divide the summed value after the iteration by the total 
number of pixels of the image, and the average value of 
each pixel in the three channels is calculated as follows.

Where Ir, Ig, Ib are the red, green and blue channels and 
all channels are normalized in the range of [0, 1] after 
their upper dynamic range. And Īr, Īg, Īb denotes the mean 
value of Ir, Ig, Ib. Compensating for red attenuation can 
make certain green signals smaller than the pixels within 
the red channel become red information and used IRC to 
represent the red channel, which is compensated as:

2.2.5 Multi-scale Integration
2.2.5.1 Weight Fusion

Multiscale fusion of images is a method of image 
fusion enhancement with different weights based 
on Laplace pyramid and Gaussian pyramid[16]. The 
exposed image after light source optimization, gamma 
correction and color compensation has significantly 
improved in color distortion and imaging blur, etc. In 
order to improve the image clarity, the algorithm in this 
paper only performs weight fusion on the V component 
of HSV color space, and then Laplace and Gaussian 
pyramid fusion on the overall image to get the enhanced 
image. The weight fusion includes the following four 
types: local contrast weight wc, Laplace contrast weight 
wl, saturation weight ws, and saliency weight wt.

(1) Local comparison weights
The local contrast weight is the deviation relationship 

between the brightness of each pixel of the input image 
and the average of the brightness of the neighboring 
pixels, so that the local contrast is enhanced in the fusion 
process[17], and the expression is:

Where Lk is the input luminance channel, I     is the 
Gaussian low-pass filter, and the cutoff frequency is 
falseww .

(2) Laplace contrast weights
The Laplace operator can effectively handle image 

edge information by applying the Laplace filter to the 
bright channel of each input image to obtain the global 
contrast by calculating the absolute value[18].

(3) Saturation weighting
The saturation weights are used to adjust the 

saturation range in the image to achieve a saturation-
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Figure 2. Light source optimization process. Panel A 
depicts the captured light source image, while Panel B depicts 
the segmented light source image after Gaussian smoothing. 
Panel C-F shows the results of performing high and low 
frequency processing on the segmented image, with Panel c 
showing the result before segmentation, Panel D showing the 
result after low frequency processing, Panel E showing the 
result after high frequency processing, and Panel F showing 
the final optimized light source effect.

Figure 3. Gamma correction function curve change.

balanced fused image, and the expressions is:

Where Li is the input image grayscale map.

(4) Saliency weighting
The saliency weight is to enhance the contrast of 

the light and dark areas and the overall contrast of the 
image for the objects that are not prominent in the water 
environment, the expression is:

Where   denotes the average value of the lab 
color channels. Normalizing the above weights, the 
expressions are as follows:

Where Wk is the fused image weight value and fals is 
the normalized weight value.

2.2.5.2 Pyramid Image Fusion
Once the weights are fused, the image will have 

obvious halos, which makes some details of the image 
lost, so it is necessary to perform multi-scale fusion on 
the image again, the method is as follows: firstly, the 
processed image is decomposed in a 3-layer Gaussian 
pyramid as a way to increase the color clarity of each 
level of the image; then the Laplace pyramid is obtained 
by making a difference with the adjacent two layers of 

the Gaussian pyramid, and the low-resolution image 
xk needs to be expanded to the same width as the 
high-resolution image xk-1 again as a difference. The 
new image embedded between the original image is 
determined by the weighted average of the grayscale 
difference with the original image. At this point, the kth 
layer of the pyramid is then scaled between the expanded 
image and the layer k-1 image to derive the layer k-1 of 
the Laplace pyramid; finally, the Laplace result map is 
upsampled to obtain the multiscale fusion image, which 
is calculated as follows:

Where k represents the number of input images, 
G represents Gaussian pyramid decomposition, L 
represents Laplace pyramid decomposition, and l is the 
number of pyramid layers.

2.2.6 Experiment
In this paper, the effect of image processing is tested 

by subjective evaluation and objective evaluation 
indicators, so as to verify the effectiveness of the 
proposed algorithm. According to the underwater data 
of uneven artificial light source (Figure 4A), weak light 
(Figure 4B), natural weak light (Figure 4C) and natural 
weak light with uneven illumination (Figure 4D), At the 
same time, it is compared with four image enhancement 
algorithms. The experimental platform is MATLAB 
R2016a, and the comparison of results is shown in 
Figure 4. 

2.2.6.1 Subjective Assessment 
As can be seen in Figure 4, the brightness of the 

photo is improved after processing with the MSRCR 
algorithm, but there is a problem of over-enhancement, 
which causes the overall image to look white and the 
image details are lost (see Figure 4B and Figure 4D). 
The brightness of the photo can be improved using the 
CLAHE algorithm, but the image color distortion is high 
(see image (B) and image (C)). the color preservation 
ability of the image after the LAB algorithm processing 
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Figure 4. Comparison of different algorith.

is slightly improved, but the brightness of the darker 
parts is not much improved (see image (A) and image 
(C)). the image after the AIEM algorithm processing has 
artifacts at the edges of the foreground objects, which 
affects the visual effect of the image (see image (A) and 
image (D)). The technique used in this study improves 
the brightness of the dark parts of the image without 
overexposure, and the effect of color preservation is 
comparable to that of the CLAHE algorithm. The edges 
of the images processed by the method described in 
this paper are sharper due to the addition of the filtering 
operation.

2.2.6.2 Objective Evaluation 
For the processing results of the algorithm in Figure 4, 

three objective indicators, contrast, information entropy, 
and peak signal-to-noise ratio (PSNR) are used for 
performance evaluation. The contrast map indicates the 
overall effect of the image, the better the overall effect of 
the image depend on the higher value; the information 
entropy indicates the fidelity of the image after the 
algorithm processing, i.e., whether the image information 
is destroyed by the algorithm; the peak signal-to-noise 
ratio is a quality detection index proposed on the basis 
of the mean square error, which reflects the compression 
of pixels before and after image enhancement, and the 
larger the peak signal-to-noise ratio indicates the better 
color effect of the image in the experiment, and the 
formula is expressed as follows:

The data results of each index are shown in Table 1, 
and the comparative analysis is as follows: The structural 
similarity (SSIM) data shows that the contrast value of 
the image processed by this algorithm has improved 
significantly compared with other methods, indicating 
that the image details obtained by this algorithm are 
clearer, the overall effect is better, and the chromatic 
aberration has been well improved. The information 
entropy (IE) data shows that the information entropy 
obtained with this algorithm is almost equal, indicating 
that the image information fidelity obtained with this 
algorithm is higher, while the information entropy 
obtained in this paper is slightly higher, indicating that 
more information is retained and better recovered after 
image clarification. PSNR data show that the images 
processed with this algorithm have the largest values, 
indicating that the overall image effect is better preserved 
and the colors are more natural. The images in Figure 
4 were extracted and matched with features using the 
scale-invariant feature transform (SIFT) algorithm from 
the VLFeat library, and the number of extracted feature 
points is shown in Figure 5. From the data comparison, 
it can be seen that the number of feature points extracted 
from the underwater images enhanced by the algorithm 
in this paper is significantly increased, and the extraction 
ability is relatively stable for four underwater images 
with different illumination and does not fluctuate much 
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Table 1. Values of the Evaluation Indicators

Image Index Algorithm SSIM IE PSNR

Figure 1 MSRCR 7.3273 21.8306 10.5068

CLAHE 6.0367 23.6343 11.3316

LAB 5.8580 21.0696 10.3689

ALEM 9.9101 24.1989 14.3850

 Our results 15.8497 24.9144 16.5083

Figure 2 MSRCR 5.9058 23.9884 10.4838

CLAHE 4.1322 22.5597 12.4892

LAB 5.4867 22.7245 11.2695

ALEM 8.9301 23.6723 10.3558

 Our results 12.8025 24.3911 14.4981

Figure 3 MSRCR 4.1712 17.1417 10.4732

CLAHE 7.0950 22.1539 11.4964

LAB 6.5386 14.4129 10.2778

ALEM 5.0418 21.3387 12.3685

 Our results 10.0054 24.6684 13.4968

Figure 4 MSRCR 4.3651 23.0114 10.4989

CLAHE 5.6005 24.5192 12.4729

LAB 3.7448 22.5441 11.4046

ALEM 3.3058 22.0114 12.2754

 Our results 11.0848 24.4009 15.4996

Figure 5. Comparison of the number of feature points.

between different images.

2.3 Feature Extraction Based on SIFT
The SIFT technique is rotation and scale invariant, 

which means it discovers key points (feature points) on 
multiple scale spaces and estimates their direction, size, 
and scale, among other things[19-21]. The SIFT algorithm 
offers the following benefits over other algorithms.

(1) Stability, the SIFT feature is a local image feature 
that retains invariance for rotation, scale scaling, and 
brightness changes, as well as a certain degree of stability 
for viewpoint changes, affine transformation, and noise. 

(2) Distinctiveness, information-rich, and appropriate 

for fast and accurate matching in enormous feature 
databases.

(3) Multi-quantity, even a few items may generate a 
significant number of SIFT feature vectors.

(4) vHigh speed, the improved SIFT matching method 
can fulfill real-time needs. 

(5) Extensibility, it is simple to mix with various types 
of feature vectors.

Due to the effect of the underwater environment, under-
water picture photography will frequently meet a certain 
degree of distortion, such as uneven lighting, sea water 
oscillations, and other variables, which may contribute to 
the evident edge blur issue after image denoising. Based on 
the qualities listed above, the SIFT method is more suited 
for underwater picture mosaic than other algorithms. This 
research adds texture information of feature points to 
photos with fewer underwater feature points to gain more 
key points. The detailed steps are as follows.

2.3.1 Feature Point Detection
2.3.1.1 Construction of Gaussian Differential Scale 
Space

where σ is the spatial scale factor, indicating the 
degree of picture blurring; scale space L(x,y,σ) is the 
convolution of the Gaussian function G(x,y,σ) and the 
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original image I(x,y), and the Gaussian function may be 
represented at different scales as

The Gaussian differential scale space is made up of 
the Gaussian function and the picture pyramid. The 
Gaussian function blurs the picture to various degrees, 
alters the image size using an image pyramid, produces 
an image pyramid model, and builds scale space. Layers 
of the same size with varying degrees of blurring may be 
generated by downsampling the picture and differencing 
(subtracting) each layer, generating a Gaussian 
differential pyramid model.

2.3.1.2 Find the Feature Point
Determine whether a difference of gaussian scale 

space point is an extreme point. To identify the local 
maximum and minimum points, as illustrated in Figure 
6, compare the pixel and its 8 neighboring points and 
9 adjacent points in the upper and lower layers. The 
Gaussian difference scale-space formula was used to 
remove border points in order to remove low contrast 
and unstable feature points.

where k is the parameter governing the magnitude of 
the eigenvalue.

Since key point identification necessitates three 
layers of scale space, the first and last levels cannot be 
employed for key point detection. To guarantee that the 
extreme points of the first and last layers are not lost, 
the basic way is to construct two pictures with Gaussian 
blur[22-25] and position them at the beginning and end 
points of the scale space.

2.3.1.3 Remove Unqualified Feature Points
Since the value of scale space is sensitive to noise 

and edge, key points need to be selected, unqualified 
points[26] (low contrast points and unstable edge points) 
need to be removed, and the remaining points are 
feature points after accurate positioning. The steps are as 
follows.

Taylor's formula is used to expand the scale space 
function D(x,y,σ) of equation 

Take the derivative of the formula and set its value to 
0 to obtain the key points:

According to the literature, if false   ,        , the key 
point is not a low contrast point and may be retained; 
otherwise, it can be erased. Given the unique features of 
underwater lighting dim, it is preferable in this research 
to sample the brightness threshold 0.01 feature point by 
experiment, and increase the accuracy of underwater 
picture alignment by increasing the key point extraction 
range.

2.3.2 Direction of the Key Point
2.3.2.1 Put Values in the Key Points' Direction

The gradient magnitude m(x,y) and gradient direction 
θ(x,y) around the key point are assigned to it using the 
following equations, respectively, to make the key point 
rotationally invariant.

Where L (x,y) is the scale space's pixel-by-pixel 
grayscale data corresponding to the key point. The 
gradient direction is represented by the direction of the 
arrow, and the length indicates the magnitude size. The 
window is then divided into eight columns, one column 
for each 45°, to create a histogram of the gradient 
direction. Lowe et al.[27] noted that the peak of the 
histogram indicates the main direction of the gradient.

2.3.2.2 Improved Feature Point Descriptors
Each keypoint is given location, scale, and orientation 

information using the aforementioned processes. The 
next step is to build a description for each keypoint 
that can be distinguished and is independent of factors 
like lighting, perspective, etc. By chunking the image 
area around the key point, computing the gradient 
histogram within the block, dividing the neighborhood 
around the feature point into 4×4 sub-regions, each of 

Figure 6. Extreme point judgment.
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Figure 7. Generation of feature point descriptors.

points are considered to be matched successfully; 
otherwise, the matching fails. Let the feature descriptors 
be n-dimensional, and define the Euclidean distance 
between the two feature descriptors as:

Where N is the number of map feature descriptors to 
be aligned. The RANSAC method is necessary for fine 
matching of feature points after coarse matching filters 
out part of the matching feature points. The RANSSAC 
(RANdom SAmole Consensus, Random Sampling 
Consensus)[28-32] algorithm assumes that all data conform 
to a certain pattern, obtains this pattern by random 
sampling, and finds the pattern that satisfies a larger 
number of data conform by repeatedly obtaining the 
pattern. The reason why it can be applied in feature point 
matching is that the transformation of two images is a 
single-shoulder transformation[33,34]. The single-shoulder 
transformation can be obtained from four corresponding 
points to obtain the single-shoulder transformation 
matrix, and all corresponding points in the images should 
satisfy this single-shoulder matrix transformation law, so 
the RANSAC algorithm can be used for the optimization 
of feature point matching[35-39], and its principle is as 
follows.

(1) Choose four sets of non-coincident matched point 
pairs at random to form the first set of interior points S’. 
Solve the transformation matrix H, which is indicated by 
the model M.

(2) The remaining point pairs are individually 
substituted into the M model, and the model error is 
calculated. If the error is less than the specified threshold, 
the pair is assigned to the inner point set S’.

(3) To generate the optimum model M with the set 
of interior points S’, assess if the number of interior 
points in S’ reaches a threshold and stop iterating if the 
threshold is reached.

(4) After removing the abnormal data, the transfor-
mation matrix H is recalculated using the matched set S’.

2.3.4 Image Fusion
After image alignment is the operation of image 

fusion. If the direct fusion method is used at this point, 
the visual effect of the fused image will be poor, as the 
overlapping part of the two images to be stitched is 
prone to the phenomenon of stitching seams visible to 
the naked eye, and the image will be blurred due to the 
simple accumulation of pixels by the algorithm itself. 
For this reason, a weighted average method is used 
instead of the direct fusion method[40-43] to perform the 

which is a square, and finally computing 8 directions 
(one direction taken at every 45°) for each sub-region 
for Gaussian weighting, the main goal is to add texture 
information to the feature points in order to make the 
underwater image texture features more obvious. Then, 
as illustrated in Figure 7, each feature point may provide 
4×4×8=128-dimensional feature descriptors.

This study extends the original SIFT feature 
by include a feature point neighborhood texture 
information, allowing the descriptors to more precisely 
characterize the feature point information and increasing 
the accuracy of feature matching. The classic SIFT 
method is enhanced by adding the feature vector, and 
the new approach is tested against the original SIFT 
algorithm in an experiment for image recognition. The 
findings demonstrate the excellent identification rate 
and resilience of this approach. The pixel as well as 
the neighborhood's grayscale distribution represent the 
image's textural characteristics. The phrase goes like 
this:

2.3.3 Improved Feature Point Matching
For feature point matching, the traditional SIFT 

method employs Euclidian Distance. Because underwater 
picture capture is more susceptible to environmental 
interference, this research employs Nearest-Neighbor 
with Distance Ratio for coarse feature point matching 
before employing the Random Sample Consensus 
(RANSAC) algorithm for exact feature point matching. 
Improving matching accuracy improves matching speed.

The principle of the nearest neighbor and second-
nearest neighbor ratio method is to calculate the 
Euclidean distance of two groups of nearest neighbor 
feature points and the second-nearest neighbor feature 
points. If the Euclidean distance ratio is less than a 
certain threshold (generally set as 0.7), the feature 
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fusion operation on the images.

If f1, f2 are two pictures to be stitched together, and 
images f1 and f2 are superimposed in space, then the 
fused image pixels f (x,y) may be described as

In the overlapping region, d1 gradually changes from 
1 to 0 and d2 gradually changes from 0 to 1, providing a 
smooth transition from f1 to f2 and achieving the effect of 
picture fusion.

3 RESULTS AND DISSCUSION
The algorithm proposed in this paper is compared 

to the standard SIFT algorithm in the MATLAB 2018b 
environment. To verify the effectiveness of the algorithm 
in this paper, underwater images are acquired with an 
AUV system, the average dive depth is 1-2 meters to 
shoot the underwater hull video, two images are selected 
as the images to be matched, and the experimental 
processing results are shown in Figure 8.

Figure 8A and 8B depicts the original image acquired 
by the laboratory AUV. However, it is evident that 
the imaging is blurred and there is significant color 
distortion. After applying the pre-processing algorithm 

Figure 8. Comparison of image stitching results using SIFT and proposed algorithm for underwater hull video. A and B: 
Original image to be matched; C and D: Pre-processed image; E and F: Feature point matching results. E: Original SIFT feature 
matching; F: SIFT feature matching in this paper; G and H: Image Mosaic result. G: Original SIFT image Mosaic results; H: SIFT 
image Mosaic results in this paper.

A B

C D

E F

G H
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Table 2. Data Comparison between the Proposed Algorithm and SIFT Algorithm

Algorithm Number of 
Feature Points

Number of Feature 
Matching Points

Successful 
Matches

Matching 
Accuracy Rate /% Time Consum/s

Classic SIFT 169 11 1 9.1% 15

Enhancement + Classic SIFT 242 69 32 46.4% 35

Enhancement + Improved SIFT 280 82 57 69.5% 29

proposed in this paper, Figure 8C and 8D is obtained, 
and it can be seen that the ship image is clearer after 
processing. When comparing the image stitching results 
achieved using the SIFT algorithm and the proposed 
algorithm, it is observed that the proposed algorithm 
generates more feature matching points, as shown in 
Figure 8E and 8F. Additionally, the final stitching effect 
achieved using the proposed algorithm has significantly 
improved the seam phenomenon when compared to the 
SIFT algorithm,as shown in Figure 8G and 8H. As a 
result, the imaging effect is better.

By comparing Figure 8G and 8H and quantized 
Table 2, it can be seen that there are few feature points 
extracted by standard SIFT technology, and obvious 
image dislocation exists after matching. However, after 
adopting the technology described in this study, the 
number of feature points in the underwater stitching 
image is obvious, and the stitching dislocation points 
are reduced after stitching, so the stitching effect can be 
seen.

4 CONCLUSION
In this paper, we provide an underwater image 

stitching method based on the optimization of AUV-
guided light sources for the interference caused by 
the special underwater environment on the images 
captured by AUV. We establish an illumination-
reflection model for the V-component of the extracted 
images and add improved algorithms for the low-
frequency and high-frequency components to achieve 
light source optimization. Pre-processing of underwater 
light interference images is achieved by combining 
two algorithms of gamma correction and multi-scale 
fusion. In addition, an improved RANSAC method 
for underwater image alignment is also proposed, i.e., 
the matching accuracy is improved by adding feature 
point texture information, and the coarse matching and 
fine matching of feature points are improved by using 
the nearest neighbor and second nearest neighbor ratio 
method  to enhance the matching rate of image stitching 
and using RANSAC algorithm and eliminate artificial 
stitching traces. The experimental results show that the 
proposed enhancement algorithm is used to process the 
images to obtain images with rich details, good color 
preservation, high signal-to-noise ratio and rich texture 
information. Compared with other algorithms, the 

algorithm extracts the most feature points and can meet 
the requirements of SIFT image stitching. Therefore, the 
enhanced image can obtain more matching pairs when 
image matching is performed, and the image has higher 
stitching accuracy. In summary, the proposed method 
can meet the requirements of fast and efficient image 
stitching, which provides value for the application of 
AUV in underwater image acquisition and processing.
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