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Abstract
Polylactic acid (PLA) is one of the most frequently used materials in Additive Manufacturing (AM) 
because it is considered as a nontoxic, biodegradable, and biocompatible material. In addition, Fused 
Filament Fabrication (FFF), or also known as Fused Deposition Modelling (FDM), is a desirable 
additive manufacturing technique to manufacture PLA because of its relatively low cost and 
geometrical flexibility. However, the uncertainty existence can lead to unpredicted failure scenarios, 
which highly can affect the quality and cost. This review focusses on the different works carried 
out on the identification of the effective parameters in the additively manufactured PLA when using 
FFF technique in order to provide the reader with an overview about different uncertainty cases for 
these common material and technique. Here, we seek to reduce the likelihood of failures when using 
the additively manufactured PLA using FFF technique. Some future ideas are suggested to develop 
new strategies with the object of improving several objectives such cost, quality, and productivity. 
In this way, we do not only need to obtain rapid prototyping, but rapid, economic, and sustainable 
manufacturing strategies are needed to be closer to a sustainable environment. 
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1 INTRODUCTION
Additive manufacturing (AM) also known as rapid 

prototyping or 3D printing, covers a set of techniques 
based on layer-by-layer concept to manufacture parts 
(or components). This technology is vastly used in 
many applications, such as aerospace, automotive, 
electronics, construction, and medicine, and healthcare 
monitoring[1-6]. Several AM methods have been 

developed[7] such as Fused filament fabrication (FFF), or 
Fused Deposition Modelling (FDM)[8], Stereolithography 
(SLA)[9], Direct Metal Laser Sintering (DMLS)[10], and 
Electron Beam Melting (EBM)[11].

One of the most established AM methods is FFF being 
widely adopted in the aviation industry to manufacture 
the end use parts[12]. Figure 1 shows a simplified 
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illustration of FFF technique[13]. Two types of filament 
supply can be found: the build filament is necessary to 
perform the printed parts and sometimes there is another 
one for the support filament. The second one is not 
obligatory in all FFF machines and can be provided with 
a different filament material. 

However, to ensure that FFF parts can meet functional 
requirements, extensive characterisation is needed to be 
performed to understand the impact of manufacturing 
process parameters on the part performance[15,16]. 
Several important advantages can be met when using 
AM technology such as time and cost reduction by 
eliminating expensive fabrication equipment, and 
possibilities on easy manufacturing of geometrically 
complex components. Furthermore, in this rapid 
prototyping process, large reduction of waste of material 
can be realized, because fabrication tools are not needed, 
and fled prints can be recycled in easy and quick ways. 
When comparing to conventional manufacturing, 
production of light structural components with desired 
weight and using multiple materials at the same time, 
are advantages of AM technology[15]. However, the high 
failure rate often leads to arise the total cost which can 
be a big obstacle to implement the AM technology as 
a production strategy[16]. The uncertainty can appear at 
several levels: designs, materials, AM process (machine 
maintenance, manufacturing parameters …).

One of the most extensively researched and used 
biodegradable material is the polylactic acid (PLA)[17-

20]. PLA is considered as a leading biomaterial for many 
applications in medicine as well as in industry and may 
replace conventional petrochemical-based polymers[21,22]. 
It has been considered as an important polymer because 
of its high potential for applicability in several fields, 

such as in the medical, chemical, and biotechnology 
domains. Several studies have recently reported its use 
as a basic component to produce personal protective 
equipment needed for the prevention of Sars-Cov-2 
contamination, responsible for the cause of coronavirus 
disease, which is at this time a major worldwide sanitary 
and social problem. This material is a non-toxic, 
biodegradable, and compostable plastic with remarkable 
characteristics from the industrial standpoint, and it 
emerges as a promising product under the concept of 
“green plastic”, because most of the polymers produced 
at this time are petroleum-based, a non-renewable 
raw material. Biotechnology routes have been stated 
as potential methodologies to produce this polymer, 
especially by enzymatic routes, by use of lipases 
enzymes. The availability of pure lactic acid isomers is 
a fundamental aspect of PLA manufacturing with more 
interesting mechanical and thermal properties[23].

So, it is the objective to focus on the existence of 
uncertainty cases which largely affect the use of the 
additively manufactured PLA (AM-PLA) by FFF 
technique. Several objectives can be improved such 
as cost, quality, productivity... Uncertainty cases may 
appear in the material properties (mechanical, physical 
properties), design (geometry, positioning, orientations, 
or directions) and the manufacturing process (speed and 
other parameters). So, effective parameters in AM-PLA 
using FFF are treated considering the design, materials, 
and manufacturing process. For example, the mechanical 
properties depend on several parameters such as build 
orientation and others[24]. So, it is needed to identify the 
different uncertainties related to theses parameters and 
other properties. Next, research gaps and future trends 
will be treated to pave the way to research to overcome 
the different appeared obstacles.

In this review, we first start with the different existing 
review articles carried out in this specific area. Next, 
several effective parameters in additively manufactured 
PLA using FFF are presented before introducing the 
uncertainty concept. After that, several probable failure 
modes in additively manufactured PLA using FFF 
are treated before selecting the proposed uncertainty 
diagram to deal with AM-PLA using FFF. Finally, the 
research gaps, future directions and conclusion sections 
are presented to show some existing challenges and the 
corresponding suggestions.

2 PREVIOUS REVIEW WORKS
This literature review section mainly focusses on the 

different review papers representing the most recent 
and relevant advances in the corresponding field. In 
fact, several reviews appeared in a same special issue 
of Advanced Drug Delivery Reviews in 2016. These 
different reviews treated several fields to show the 

Figure 1. FFF illustration[14].
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different performed efforts in industry and academia. 
For example, Saini et al.[25] discussed the opportunities 
for PLA blends in the biomedical arena, including 
the overview of blending and post blend processing 
techniques and the applications of PLA blends 
presently in use and under development. Ramot et al.[26] 
reviewed the process of inflammatory reaction that is 
to be expected following implantation of PLA, and it 
highlights specific cases in which the inflammatory 
reaction can result in safety concerns. In addition, they 
reviewed some cases from different medical areas in 
order to demonstrate possible clinical side effects which 
result from its use. Furthermore, in a review of Poh et 
al.[27], the authors gave an overview of AM and both 
industry and academia labours in addressing specific 
requests in the additive manufacturing technologies 
in order to drive toward AM-enabled industrial 
revolution. Next, they discussed some considerations 
and challenges of poly(lactides) as a biomaterial in 
additive biomanufacturing areas. After that, according 
to the review of Farah et al.[21], the objective was to 
deal with the mechanical and physical properties that 
affect stability, processability, degradation, aging, 
recyclability..., and therefore its potential suitability 
to fulfill specific application requirements. They also 
summarized variations in these properties during PLA 
processing (i.e., thermal degradation and recyclability), 
biodegradation, packaging and sterilization, and aging 
(i.e., weathering and hygrothermal). Furthermore, they 
discussed up-to-date approaches for PLA properties 
improvements including components and plasticizer 
blending, nucleation agent addition, and PLA 
modifications and nano-formulations. Incorporating 
better understanding of the role of these properties 
with available improvement approach is the key for 
successful use of PLA and its copolymers / composites 
/ blends to maximize their fit  with worldwide 
application requirements. Furthermore, PLA has a high 
technological importance because PLA-based polymers 
are acquiring. And due to their characteristics, they can 
be used in several areas, mainly medical, pharmaceutical 
and biotechnology. 

In a review of Baran and Erbil[28], chemical structure, 
production methods, general properties, and present 
market of the PLA were first described. Next, they 
discussed the chemical modification possibilities 
of PLA, its use in AM machines, and the surface 
modification methods of PLA polymers in several areas. 
In addition, they especially reviewed the AM method 
where the PLA filaments are utilized in the extrusion-
based technologies. According to their review, several 
methods have been proposed for the permanent surface 
modifications of the PLA where covalent attachments 
were made. Among these methods, we have alkaline 
surface hydrolysis, photo grafting by UV light, atom 

transfer polymerization, plasma treatment, and chemical 
reactions after plasma treatment. Some of these 
approaches can be used to improve the performance 
for surface modifications of PLA objects obtained by 
AM, especially in biomedical areas. In a recent review 
by Albuquerque et al.[23], many recent information 
regarding the development of research in this area, have 
been collected. Their review was performed from a 
biotechnological standpoint with the object of dealing 
with at a totally green bioplastic production. 

Other reviews have been generally carried out on 
polymers where some parts of them focussed on PLA 
using FFF. For example, Dizon et al.[24] provided a 
brief discussion about AM and the most employed AM 
technologies for polymers. They described the frequently 
used ASTM and ISO mechanical test standards. These 
standards have been utilized by several research groups 
to test the strength of the AM parts. In addition, they 
summarized several works regarding the mechanical 
properties of AM components where the properties 
were identified under different loading types (tensile, 
compressive, bending, fatigue, impact...). Furthermore, 
properties have been involved at low temperatures. 
Moreover, the influences of fillers and post-processing 
have been discussed on the mechanical properties. 
Finally, they treated several vital questions to standardize 
mechanical test methods.

In the same year, Popescu et al.[29] realized a review 
to identify practical and useful aspects, key process 
parameters and limitations, and for understanding 
to what extent the results of the used papers were 
relevant and could be applied in further studies and real 
applications. They performed a systematic literature 
based on classification according to the additively 
manufactured polymer type. The most important 
process parameters being considered as influencing 
FFF specimens' compression, tensile, impact or flexural 
strengths were discussed considering the existing results 
in literature. 

Recently, Sola et al.[30] reviewed the standardisation 
needs in AM with a focus on mechanical testing and 
examined the hurdles that are encountered when existing 
standards were applied to measure the tensile properties 
of polymer parts fabricated by FFF, which is presently 
the most popular material extrusion AM technique. In 
fact, existing standards could not be considered for the 
several AM parameters which control the mechanical 
response of FFF components. They also found that 
several works in literature suggests that the complicated 
interplay between structural features at different length 
scales (micro / meso / macro-structure) and the raster- 
and layer-induced anisotropic behaviour undermine pre-
existing concepts concerning the specimen geometry 
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and classical theories concerning the size influence, and 
ultimately endanger the transferability of conventional 
tensile test standards to FFF components. Their literature 
survey, which was defended by the experimental results, 
demonstrated that current standards for tensile testing 
should be used for FFF parts with caution until dedicated 
standards become available. Despite it is not specified in 
existing standards, set-up and AM parameters should be 
fully described to guarantee the results repeatability. The 
different reviews deal with different works to improve 
the properties of the AM-PLA using FFF, however 
according to the author’s knowledge, there is no detailed 
review dealing with uncertainty cases in this context. 
In the next section, we present several works which 
studied the effective parameters in AM-PLA using FFF 
in order to establish a diagram containing the different 
uncertainty cases in this area. 

3 EFFECTIVE PARAMETERS IN ADDITIVELY 
MANUFACTURED PLA USING FFF

In general, several parameters during preparation, 
manufacturing, and post-manufacturing stages can 
affect the AM. In this way, quality and behaviour of the 
additively manufactured products can be affected[15]. 
In recent years, there is a rise to adopt the additive 
manufactured components to be end use parts (or 
products). The appearance of this increase is especially 
in an aviation industry, where several benefits such as 
shortened supply chain and parts on demand lead to 
significantly reduce the total cost. FFF is one of the most 
established AM methods. It is widely adopted in the 
aviation industry to manufacture the end use parts. 

In order to guarantee that FFF parts can arrive 
to functional requirements, we have to carry out an 
extensive characterisation to understand the effect of 
AM process parameters on the fabricated component 
performance. Considering the quick growth of the 
consumer FFF market and the large focus on providing 
useful, real applications of this technology becomes an 
increasing request to identify the material properties of 
the final products[31]. FFF machines can produce parts 
with consistent material properties, and it is also possible 
to estimate the effective parameters. The evaluation of 
the mechanical performance of internally defected parts 
or structures is very important to several industrial areas 
such as automobile, aerospace, marine and construction. 
Many studies in literature include only numerical or 
analytical solutions because the fabrication of testing 
samples with a complex geometry is not easy. Mourad 
et al.[32] investigated the defect geometry, orientation, 
location along the sample gauge length and the influence 
of the process parameters, such as the infill percentage 
and the material colour. The internal defect influence is 
more pronounced for a 100% infill density compared to 
a 50% because of the porosity. Furthermore, the additive 

colour to the PLA might contribute to its strength. In 
general, their findings opened another possibility to use 
the AM technology in many fields where there is a need 
to assess internally defected material.

Furthermore, for tensile properties, according to Sola 
et al.[30], additive manufacturing is progressing from 
being a rapid prototyping tool to serving as pillar of the 
Industry 4.0 revolution. Because of their low density 
and ease of printing, polymers are receiving increasing 
attention for manufacturing of structural and lightweight 
parts. Nonetheless, the lack of appropriate standards, 
specifically conceived to consistently verify the tensile 
properties of polymer parts and benchmark them against 
conventional products, is a major problem to the wider 
uptake of polymer AM in industry. After reviewing the 
standardisation needs in AM with a focus on mechanical 
testing, their paper closely examines the hurdles that 
are encountered when existing standards are applied 
to measure the tensile properties of polymer parts 
fabricated by FFF, which is presently the most popular 
material extrusion AM technique. Existing standards are 
unable to account for the numerous printing parameters 
that govern the mechanical response of FFF parts. 
Moreover, the literature suggests that the raster- and 
layer-induced anisotropic behaviour and the complicated 
interplay between structural features at different length 
scales (micro/meso/macro-structure) undermine pre-
existing concepts regarding the specimen geometry and 
classical theories regarding the size effect, and ultimately 
jeopardise the transferability of conventional tensile test 
standards to FFF parts. Many studies provide the effect 
of more than one parameter on the different properties 
(mechanical, chemical, physical properties)[33-36]. So, 
it is difficult to present each parameter separately. For 
example, we start with the temperature effect and next 
present the paper since Ekinici et al.[37] and Kharmanda[16] 
only focussed on temperature effects. 

3.1 Effect of Temperature
Ekinici et al.[37] considered FFF monolayered thin 

films of PLA in terms of mechanical and hydrolytic 
properties at 37 ℃ in vitro degradation. Throughout 
degradation, the reduction in mechanical properties 
was studied by analysing molecular weight and 
thermal properties. FFF monolayered PLA underwent 
autocatalytic bulk degradation with no proof of 
important mass loss. They found that Young’s modulus, 
ultimate tensile strength and molecular weight decreased 
approximately by 60%, 86%, and 80% after 280 days, 
respectively, while the degree of crystallinity raised by 
143% in comparison to benchmark thin films at day 0. 
It was found that the decrease in mechanical properties 
was more sensitive to the rise in crystallinity in the early 
stage of the degradation, while the molecular weight 
was more dominant in the late stage of the degradation. 
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Their study provided practical information in terms 
of mechanical properties to support medical device 
designers in a range of potential end-use biomedical 
applications to get safe functional products over the 
needed degradation lifetime.

Furthermore, Kharmanda[16] found that the preheating 
temperatures clearly affects the stability of the AM 
process regarding three slicing models: rafted, brimmed, 
and skirted models. When raising the preheating 
temperatures, there is a big potentiality to improve 
the adhesion and stability levels. It is also found that 
when the preheating temperature of the build platform 
equals to 50°C, the only model which can be additively 
manufactured, was the rafted slicing model. However, 
when increasing the platform temperature to be 100°C (at 
the preheating stage), the brimmed slicing model can be 
also additively manufactured. On the other hand, for the 
skirted slicing models, the preheating temperatures of the 
platform and the extruder can affect the adhesion and the 
stability levels. In this case, the preheating temperatures 
should be at least 220°C for the extruder and 100°C for 
the build platform. Thus, it has been concluded that the 
AM process stability, especially at the beginning, can 
be affected by preheating conditions. To improve the 
adhesion potentiality, some companies advise the user 
to utilize the glue. However, the quality of the platform 
surface may be affected when removing the glue at the 
end of the AM process. So, it was not recommended to 
utilize glue at the beginning of the AM process.

3.2 Effect of Colour
According to Wittbrodt and Pearce[31], it was found 

that a critical printing temperature for each colour to 
optimize the crystallinity based on the results for white 
filament. When printing at 190°C, each colour had a 
distinct tensile strength and percent crystallinity when 
analysed with tensile testing. Here, a conscious decision 
can be made to select the colour that a part is printed 
in to obtain desired material properties. In addition, 
according to their results on the effect of temperature, 
there can be a critical temperature of the percent 
crystallinity present in each material. So, there is a need 
to investigate the influence of printing temperature as a 
function of the other colours in order to create a matrix 
of properties which allows for a more complete material 
selection to be conducted. Recently, Andó et al.[38] 

investigated the mechanical properties of two-coloured 
PLA parts (white and silver) manufactured by FFF 
technique. A tensile testing method was used, and two 
different types of failure were found. So, the colours can 
significantly affect the mechanical properties.

3.3 Effect of Geometry
The geometry effect can be noted at two levels: design 

and process levels. Several parameters can be entered in 

the context of geometry such as support structures, build 
orientation, layer thickness, path tool...

3.3.1 Support Structure
Support structures can be considered at the design 

level. For complex geometries, the AM process cannot be 
carried out without supports when having overhanging 
features[39]. According to the laws of gravity, the filament 
cannot be extruded in the air. So, it is necessary to add 
support structures to continue and succeed the AM 
process. According to Kharmanda[16], the type of support 
structures may affect the resulting printed parts (quality 
and cost). It was concluded that for tree-like supports, 
the likelihood of failure is higher than linear supports. It 
has also been shown that for linear support results, two 
trials were performed at the temperatures 220 / 100°C 
(for extruder and build platform, respectively) and only 
one of them succeeded. Despite they were submitted 
to the same process conditions such as adhesion 
surface and preheating temperatures, one of them fall. 
Therefore, the uncertainty should be considered when 
choosing the support structure types. As result, it was 
found more failure cases for tree-like support samples. 
So, when selecting suitable support structures during 
the design stage, uncertainty should be considered to 
reduce the likelihood of failure from the beginning of 
design. Uncertainty cases may appear even during the 
AM processes which may lead to failure modes in the 
supports themselves.

3.3.2 Build Orientation
In the work of Chacón et al.[40], it was the objective 

on-edge oriented samples to show the optimal 
mechanical performance. They characterized the effect 
of build orientation on the mechanical performance of 
the used PLA samples which were fabricated with a 
low-cost 3D printer. They used tensile and three-point 
bending tests to find the mechanical response of the 3D 
printed specimens. AM samples behave anisotropically 
because of the layer-by-layer way. Upright orientation 
leads to the lowest mechanical properties. However, on-
edge and flat orientation leads to the highest strength 
and stiffness. The orientation largely increases the 
anisotropy of the printed part, which can be considered 
as a significant subject to uncertainty. In addition, other 
works in literature have been carried out to test the build 
orientation effect on the fatigue behaviour studies of 
AM-PLA[41,42].

3.3.3 Layer Thickness
In the work of Chacón et al.[40], the authors also 

characterized the effect of layer thickness on the 
mechanical performance of PLA samples manufactured 
with a low-cost 3D printer. From a layer thickness 
standpoint, it is noted that when the layer thickness 
increases, the ductility decreases. In addition, when 
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increasing the layer thickness for the upright orientation, 
the mechanical properties increase. Conversely, the 
change in mechanical properties with respect to layer 
thickness variations are of small importance for on-
edge and flat orientations, except in the case of low 
layer thickness. When slicing the design geometry, the 
layer thickness can be optimized to balance between 
the mechanical properties and ductility. In addition, 
Heidari-Rarani et al.[43] presented some experimental 
results to select the optimal layer thickness for the 
modulus of elasticity, the ultimate tensile strength, and 
the failure strain. The optimal layer thickness value was 
0.1mm for the modulus of elasticity and the ultimate 
tensile strength, while it was 0.2mm for failure strain. 
Some experimental studies are needed here to describe 
mathematically the relationship between the layer 
thickness and the other mechanical properties.

3.3.4 Effect of Toolpath
Many types of toolpath patterns (raster, zigzag...) have 

been developed for AM process[44]. In FFF technique, 
the structure of the printed component is controlled by 
the toolpath which may highly depend on the design 
geometry. In this way, the variation of either process 
parameter or design geometry will result in a change in 
the toolpath and a corresponding change in the structure 
of the FFF part. Then, the corresponding property 
will be affected. Because of the process-structure-
property linkage, toolpath can have an important effect 
on FFF component performance. Existing research 
has extensively concentrated on the effect of process 
parameters on the performance of the FFF part[45]. But it 
is supposed that toolpath planning being significantly less 
extensively treated, can have effect on the component 
performance. To investigate the effect, the research of 
Zhang et al.[45] utilised 5 different tensile specimens 
and 2 different fabrication methods, namely specimens 
printed to net shape and specimens machined from a 
printed plate. The net shape specimens were found to be 
substantially strengthened and stabilised in the presence 
of toolpath features. In addition, because of the linkage 
of process-structure-property, the features translated into 
favourable improvement in mechanical performance that 
strengthened the net shaped specimens by up to 51%. 
They characterised the toolpath effect on the mechanical 
properties and discussed how the toolpath features such 
as thermal history, contours travel distance, affect FFF 
components that can help in the performance prediction 
of FFF structures. The toolpath affects the AM process 
and the final product quality. So, a detailed study in this 
context leads to a big number of results, which requires 
advanced algorithms to optimize the AM process. 

3.3.5 Effect of Infill Tool
The infill tool (density, pattern, orientation...) can 

significantly affect the material properties of the resulting 

AM parts[46-48]. The infill orientation on mechanical 
properties and the effects of interactions have been 
studied by Lanzotti et al.[49], while Heidari-Rarani et 
al.[43] carried out some experimental results to select 
the optimal infill density for the modulus of elasticity, 
the ultimate tensile strength, and the failure strain. The 
optimal infill density value was 80% for the modulus of 
elasticity, the ultimate tensile strength, and failure strain. 
For the same infill pattern, a mathematical description 
can be found to show the relationship between the 
mechanical properties and the density/infill orientation 
for AM-PLA using FFF. 

3.4 Effect of Feed Rate
In the work of Chacón et al.[40], in addition to studying 

the effect of build orientation and layer thickness, the 
authors characterized the feed rate on the mechanical 
performance of PLA samples manufactured with a low-
cost 3D printer. They found that ductility decreases when 
increasing the feed rate and the mechanical properties 
increase as the feed rate rises for the upright orientation. 
Conversely, the variations in mechanical properties 
with the feed rate are of minor importance for on-edge 
and flat orientations, except in the case of low layer 
thickness. The feed rate can affect the layer thickness 
during the AM process, which reduce the quality of the 
final product. In addition, this may lead in certain cases 
to a failure scenario[16]. 

3.5 Effect of Printing Speed
Heidari-Rarani et al.[43] presented some experimental 

results to select the optimal printing speed for the 
modulus of elasticity, the ultimate tensile strength, and 
the failure strain. The optimal printing speed value was 
40mm/s for the modulus of elasticity, the ultimate tensile 
strength, and failure strain. In the study of Khosravani 
et al.[15], it has been shown that strength was decreased 
when increasing the printing speed. Higher speed can 
decrease the volume of the extrusion that decreases the 
stability of printing. Although printing speed has small 
influence on strength of specimens when comparing 
to the direction of raster, it has an essential role on 
production cost. Conversely, the combination of raster 
direction and printing speed had a crucial influence on 
the strength and mechanical properties of 3D printing 
test coupons. According to the conducted fractographic 
analysis, they concluded that the fractures were oriented 
with the direction of raster. Since in their study a 
biopolymer PLA was investigated, the results can be 
used for analysis on bio-composite which used PLA with 
same grade. Their results can be utilized for new designs, 
reinforcement configurations, and next computational 
models.

3.6 Effect of Nozzle Vibration
Chen et al.[50] used a self-developed print head 
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vibrating a nozzle vertically in order to study the 
possibility of improving the vertical tensile strength of 
printed parts using FFF technique, with the objective 
to find the appropriate vibration frequencies. They 
printed PLA specimens at five different vibration 
frequencies and in the horizontal and vertical directions. 
The results of their work showed different surface 
roughness and porosity at different vibration frequencies. 
When increasing the vibration frequency, the vertical 
tensile strength increased. However, the horizontal 
tensile strength of the printed parts was affected by the 
vibration. So, the vibration in the nozzle reduces the 
material viscosity and decrease inertial forces which 
affect the porosity of the printed parts and enhance the 
polymer chains diffusion. In addition, according to Jiang 
et al.[51], the vibration can affect the adhesion and may 
lead to remove the printed part from the build platform. 
Several vibration studies containing a mathematical 
modelling, are needed to support the use of AM-PLA 
using FFF technique. 

4 UNCERTAINTY CONCEPT
4.1 Uncertainty Definition

Uncertainty can be simply understood as impossibility 
to describe exact future outcomes because of an 
existing limited knowledge[52]. It can refer to failure 
modes in which information is hardly available. This 
uncertainty can exist in the design and/or the process[53]. 
The uncertainty is related to the variability which can 
originate from several risks which have two major 
origins: 1) intrinsic risks (operational constraints) which 
may affect the product quality, are essentially related to 
operational stresses (internal forces, movements, etc.) 
and quality constraints (material properties, quality of 
surface, the measurement precision, etc.). 2) extrinsic 
risks (quality constraints) which are mainly related to the 
environment and can have two origins: climatic stress 
(temperature, pressure, humidity, etc.) and mechanical 
stress (loading, forced deformation, etc.)[54,55].

4.2 Uncertainty Categorization
In literature, uncertainty has been defined in several 

ways regarding several standpoints[56-59]. Or the 
uncertainty can be categorized considering several points 
of view such as dimension, type, class, and model. 
Figure 2 shows the different uncertainty categorization.

4.2.1 Uncertainty Dimensions
According to Bradley and Drechsler[60], there are 

three fundamental dimensions to uncertainty: its nature, 
object, and severity. Figure 3 shows a simplified diagram 
of these three dimensions. The first dimension ‘Nature’ is 
related to the judgement nature being made. Here, three 
basic forms of uncertainty are distinguished: modal, 
empirical and normative. Modal uncertainty is about 
what is possible or about what is probable to be the case. 

Empirical uncertainty is about what is the case (or has 
been or would be the case). Normative uncertainty is 
about what is desirable or what should be the case. The 
second dimension ‘Object’ is related to the objects of 
the judgements that agents make; the reality features 
that their judgements are directed at. Here, two basic 
uncertainty forms are distinguished: Factual uncertainty 
which is about the actual world and counterfactual 
uncertainty which is about non-actual worlds. The third 
dimension ‘Severity’ is related to the problem which the 
agent has in making a judgement about the prospects 
they face, a feature that depends on the quantity of 
judgement-relevant information that is available to them, 
how coherent this information is, and what inferential 
and judgemental skills they own. We distinguish here 
four basic forms of uncertainties: Ignorance form 
is about when the agent has no judgement-relevant 
information. Severe uncertainty is about when they only 
have enough information to make a partial or imprecise 
judgement. Mild uncertainty is about when they have 
sufficient information to make a precise judgement. 
Certainty form is about when the judgement value is 
given or known.

In fact, the final features of an additive manufactured 
component often deviate from the nominal values of the 
3D model’s features due to the factors such as resolution, 
process parameters, process technology, and the 
measurement method. Here, the diagram in Figure 3 can 
be modelled in several ways to relate these components 
to the AM process.

4.2.2 Uncertainty Types
According to Bradley and Drechsler[60], there are 

three types of uncertainty: 1) ethical uncertainty, 2) 
option uncertainty, and 3) state space uncertainty. Ethical 
uncertainty appears when the agent cannot assign precise 
utilities to consequences. The second type called option 
uncertainty appears when the agent does not know what 
precise consequence an act has at every state. Finally, 
state space uncertainty appears when the agent is unsure 
how to construct an exhaustive state space. These 
uncertainty types are related along the three following 
dimensions: nature, object, and severity. For more details 
about the different relationships, the interested reader 
can refer to Bradley and Drechsler[60]. 

4.2.3 Uncertainty Classes
According to Gray et al.[61], most in the uncertainty 

quantification community agree that uncertainty 
is classified considering two classes: aleatory and 
epistemic uncertainty. These two classes behave 
differently and need a careful and separate consideration 
in their modelling. This distinction between the nature 
of uncertainty is echoed in the NASA challenge problem 
statement, which evidently states that their computational 
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Figure 2. Uncertainty categorization diagram. Figure 3. Uncertainty dimension diagram.

model has both aleatory and epistemic inputs. 

Aleatory uncer ta inty  appears  f rom natural 
stochasticity and can be referred to as randomness. The 
specific random values of an aleatory parameter cannot 
exactly be predicted; while its total dispersion follows 
a specific probability distribution that may in aggregate 
be inferred. Aleatory uncertainty is then thought to be 
perfectly modelled by probability theory, where the 
probability is interpreted as a frequency. This uncertainty 
type is irreducible in the sense that collecting more data 
may give a better characterisation of its distribution but 
cannot reduce it to a scalar. 

Epistemic uncertainty, which appears from imperfect 
knowledge is typically understood to be reducible 
by empirical effort (gaining more knowledge)[62,63]. 
Epistemic parameters are constant, but unknown, and 
are not indeed varying. In addition, this uncertainty 
may be modelled with probability, following the 
Bayesian interpretation, where a probabilistic statement 
is a subjective degree of belief assigned to possible 
events. The Bayesian interpretation does not make 
any distinction between the frequency of observed 
events or subjective belief about unobserved events. 
Kolmogorov’s axioms, defining the probability calculus, 
do not distinguish between these either, therefore 
characterising physical systems with a combination of 
both (observed data and subjective belief) can allow 
biases to yield wrong results.

4.2.4 Uncertainty Models
There are two models of the world, deterministic 

model and probabilistic one. Newton’s laws can be 
considered as good examples for deterministic ones. 
However, several important phenomena cannot be 

described by deterministic expressions or models. For 
example, equipment failure time exhibit variability 
that cannot be removed, considering the present state 
of knowledge and technology. So, it is impossible to 
know (predict) when the next failure may happen. The 
randomness (or variability) in this case imposes the use 
of the concept of uncertainty[53]. 

In this way, uncertainties can be represented by 
quantitative models or qualitative ones. Quantitative 
uncertainties can be described in terms of uncertain 
numerical values[64,65]. These can be handled considering 
mathematical expressions of probability and statistics. In 
addition, it is possible to elicit subjective expert opinion 
on the uncertain values. Expert elicitation is the only 
available option in many cases since measurements 
(models) are not available or since it is impossible to 
measure the assessed quantity (e.g., several hypothetical 
future states). 

However, qualitative uncertainties associated to 
the scenario choice, can be evaluated by running 
alternative analyses and then comparing the results. 
Each alternative analysis may contain quantitative 
uncertainty modelling. This is the approach proposed 
in the EFSA Guidance12 in which basic probabilistic 
models are defined for an optimistic and pessimistic 
mode. This approach has been illustrated considering 
alternative sets of input files and uncertainty model 
settings for the optimistic and pessimistic model modes, 
when calculating exposures to a group of pesticides[66]. 
In addition, according to the concepts of “Art” and 
“Science” in the technological uncertainty, introduced 
by Bohn[67], it is mentioned that ‘Sometimes it works, 
sometimes it does not, and in either case I do not know 
why[67].
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5 UNCERTAINTY IN ADDITIVE MANUFACTUR 
-ING

The objective of uncertainty evaluation is to study 
how the variation in the probabilistic output of a model 
can be apportioned to different sources[68]. When 
performing AM processes on the AM-polymer materials, 
the resulting components are still now utilized as 
conceptual prototype parts, not as functional elements 
because of their poor mechanical properties[69]. Here, 
several sources of uncertainty may appear. So, it is 
important first to assess the different risks which result 
from these uncertainties. When starting with the design 
stage, uncertainty cases in geometric models may lead 
to manufacturing issues. This way, some deviations 
from the as-designed geometry can be appeared[70]. In 
addition to geometry uncertainty, material properties 
also represent a subject of uncertainty. They are related 
to several parameters such build direction, orientation, 
extrusion etc. In addition, this uncertainty in material 
properties affect the manufacturing cost. So, there is a 
need to find an effective AM framework to solve these 
kinds of problems[71,72]. 

Furthermore, it is very important to know that each 
situation has some levels of uncertainty. However, one 
can confuse when the failure happens due to uncertainty 
or change of inputs. Here, we present some examples 
to show first the  difference between a failure due to 
change of inputs (Figure 4) and another one because of 
uncertainty (Figure 5). So, Figure 4 shows an example of 
failure due to change of inputs. The rafts in Figures 3A 
and B are used to increase the adhesion level during the 
AM process[16]. These rafts can be removed at the end of 
AM process. The failure occurred because the dimension 
of the raft in Figure 4A is smaller than that used in 
Figure 4B, which affect the stability of the printed part 
during the AM process. Here, the failure is not due to 
uncertainty case. 

However, Figure 5 shows another failure example 
where same conditions were considered to both column 
supports. The dimensions of the rafts in Figure 5A and B, 
are similar and the other inputs are similar as well.

The failure cause was a perturbation of the material 
distribution during the manufacturing process at the 
bottom layer of the raft (as shown in Figure 6), that led 
to instability. In this way, when arriving close to the end 
of this part where the height of the product increases, 
the moment increases and lead to separate the printed 
part from the platform (adhesion problem). Here, it is 
preferable to integrate a monitoring system during the 
AM process in order to reduce the waste of time and 
materials.

The third example is illustrated in Figure 7 where the 

same inputs are applied, but the failure cause is unclear. 
Here, the same inputs had been applied and the failure 
case happened between two succeeded trials. In this 
uncertainty case, the failure cause is not clear. It may be 
happened because of change of temperature (extruder 
and/or platform), change of filament supply speed and/or 
other causes. 

For understanding other failure scenarios, the 
interested reader can refer to[16]. When applying the 
same conditions, the resulting failure case occurs due to 
uncertainty, while when applying different conditions, 
we cannot consider that the resulting failure case occurs 
due to uncertainty issues. It occurs because of the effect 
of the change of one or more input parameter(s).

6 PROBABLE FAILURE MODES IN ADDITIVELY 
MANUFACTURED PLA USING FFF

The failure consequences are the main driver in the 
different decisions. The different failure consequences 
can be divided to certain categories such as safety, 
operational, economic... This classification can help to 
prioritize the failure modes[73,74]. Uncertainty is related to 
failure modes which should be identified first and after 
that the cause of these failure modes should be known. 
An indicator can be added to ensure that a certain value 
belongs to a given parameter interval. If the value of 
this parameter exceeds the interval, the failure may 
happen. When the value falls outside a given range, logic 
establishes that there may be several causes responsible 
for this deviation. In this case, the corresponding 
components may need to be replaced. In this section, we 
present some causes of these failure modes: 

-  Geometry complexity: In certain complex 
geometries (overhanging features), support structures 
are needed during the additive manufacturing process[75]. 
It is recommended to add a raft and to increase the 
temperature of the build platform during the AM process 
in order to reduce the waste of materials and time 
(repeated trials). Advanced techniques and methods 
such as topology optimization and artificial intelligence, 
can be found in literature to deal with self-supporting 
structures[76,77]. 

- AM-material quality: In order to reduce the waste of 
materials and time (repeated trials), it is recommended 
to focus on the quality of the used material. Many 
parameters during preparation, manufacturing, and post-
manufacturing processes have influence on quality and 
behaviour of the AM parts[15].

- Preheating of extruder and platform: Some 
manufacturers suggest using glue materials to increase 
the adhesion possibility. In this way, the quality of the 
platform may be affected in the future uses. Therefore, 
it is recommended to arise the preheating temperatures 
concerning the extruder and build platform[16]. 

- Heating of build platform during the AM process: 
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Figure 4. Comparison of manufacturing failure examples 
due to different change of inputs. A: Succeeded trial of 
a column support; B: Un-succeeded one (product exists in 
3d-printing-4u.com).

Figure 5. Failures due to uncertainty. A: Succeeded trial 
of a column support; B: Un-succeeded one (product exists in 
3d-printing-4u.com).

Figure 6. Adhesion problem at the raft level (product 
exists in 3d-printing-4u.com).

Figure 7. Trials of a candy plate. A: Succeeded trial of a 
candy plate; Bun-succeeded one (product exists in 3d-printing-
4u.com).

In order to reduce the waste of materials and time 
(repeated trials), it is recommended to arise the platform 
temperature the during the AM process taking into 
account certain thresholds[78]. 

- Heating of extruder during the AM process: In order 
to reduce the waste of materials and time (repeated 
trials), it is recommended to increase the extruder 
temperature during the AM process. But this increase 
is limited to a certain threshold to avoid affecting the 
environment and product quality[78].

- Filament supply speed (or feed rate): The AM 
process and the product quality can be affected by this 
parameter. So, an appropriate filament supply speed 
(or feed rate) helps to get smooth surfaces and process 
stability. In addition, according to Chacón et al.[40], the 
mechanical properties can be affected by the change of 
feed rates.

- Dimension homogeneity: When dealing with large 
dimensions, adhesion issues can appear in certain points 
at the first layers since the applied forces can lead a 
big value of bending moment. Here, the raft may be 
separated from the platform[16].

- Thickness of layers: It has been shown that the layer 
separation scenario behaves linearly against the layer 
thickness[79]. Many experiments are needed to provide a 
suitable prediction of the failure probability.

- Printing orientation: The failure mode depends on 

the orientation of the material layers. It can be parallel 
or perpendicular to the material layer[79]. In addition, the 
printing orientation play an important role to improve 
the mechanical properties of the final products.

There  i s  a  need to  es tabl ish  mathemat ica l 
interpolations (relationships) between the presented 
parameters and the mechanical properties of the 3D 
printed products, especially when dealing with AM-PLA 
using FFF. 

7 QUALITATIVE UNCERTAINTY DIAGRAM IN 
AM-PLA USING FFF

Based on several elicitations, a diagram of the 
different uncertainty cases for AM-PLA using FFF 
is presented in Figure 8 to classify them and to show 
the effects between the different components. Here, 
we classify the uncertainty cases according to their 
appearance into two levels: design level and process 
one. At the design level, uncertainty may appear in 
the geometry and material (especially anisotropy). 
Any uncertainty problems may lead a big number of 
trials to provide good quality products. So, design 
should be optimized under uncertainty (quantitative or 
/ and qualitative). At the process level, there are many 
parameters leading to the uncertainty appearance: 
geometry (orientation, direction, thickness...), printing 
speed, filament feed rate, temperature (platform and 

A B

A B A B
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extruder during the printing and at the preheating 
period), adhesion and even the colour. There are 
correlations between several parameters as shown in 
Figure 8. The failure rate level in the 3D printing play 
an important role. It is recommended to simulate the 
AM process in order to reduce to reduce the failure 
likelihood. Sometimes, uncertainty cases may appear 
despite all precautions are taken onto account before as 
shown in Section 5.

8 RESEARCH GAPS AND FUTURE DIRECTIONS
AM is considered as a revolution since the final 

products are designed, manufactured, and distributed 
to end users in a fast way. It has earned important 
academic as well as industrial interests because of its 
ability to create complex geometries (shapes) with 
customizable material properties. Furthermore, it has 
inspired the development of the maker movement by 
democratizing design and manufacturing. Because of 
the rapid proliferation of a wide variety of technologies 
associated with AM, there is a lack of a comprehensive 
set of design principles, manufacturing guidelines, 
and standardization of best practices. These tasks are 
compounded by the fact that advancements in multiple 
technologies such as topology optimization[80-83], 
generate a ‘‘positive feedback loop’’ effect in advancing 
AM. To advance research interest and investment in AM 
technologies, some fundamental questions and trends 
about the dependencies existing in these avenues require 
to underline[84].

There is a need to develop an international standard 
for AM-PLA to enable the wider uptake of additive 
manufacturing in industry, to benchmark new materials 
and products against conventionally manufactured 
one. When dealing with several properties (physical, 
chemical, and mechanical properties), several kinds 

Figure 8. Qualitative uncertainty diagram for AM-PLA using FFF.

of uncertainty may appear which leads to a need to 
define a large standard containing the different probable 
uncertainties. Currently, there are efforts to define some 
standards for certain properties. For example, when 
considering the tensile properties, several standards 
developing organisations worldwide are now working 
to overcome the existing obstacles and stimulate the 
knowledge, research, and technology advancements 
through the standard developments for AM. However, 
the present lack of specific standards that outline how 
to measure and report the tensile properties of AM 
components still needs immediate care. Furthermore, 
tensile properties are so common that we often identify 
them as the “mechanical properties”, tout court. In 
addition, existing standards for the tensile properties 
determination of conventional materials are not 
immediately applicable to AM components. Despite, 
the FFF is at this time the most widespread polymer-
based AM method, the analysis of the literature shows 
that existing standards are not able to account for the 
several parameters included in FFF, although they 
possess a big effect on the mechanical properties. So, 
until availability of dedicated standards for FFF, the 
exact processing parameters and conditions should be 
fully described alongside the testing parameters in order 
to ensure the possibility to repeat the test[30]. Hence, 
the raster- and layer-based build-up of AM parts and 
the complicated interplay of structural features across 
different length scales in FFF undermine the reliability 
of results obtained from dumbbell-like specimens and 
erode all classical theories concerning the size influence. 
In addition to international standards, there is a need to 
develop failure models to predict the tensile behavior of 
additively manufactured specimens.

On the other hand, when dealing with composite 
PLA material, additional challenges may appear such 
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as printing temperatures, feed rates...[85-90]. Figure 9 
shows an example of a failure case for a composite 
PLA material (Figure 9a) relative to a homogenous 
PLA one (Figure 9b) considering the same design and 
process parameters. The temperatures of the extruder 
and platform during the AM process were 210°C and 
50°C, respectively. The used preheating temperatures for 
the extruder and for the build platform were 220°C and 
50°C, respectively. 

In the work of Heidari-Rarani et al.[91], an innovative 
extruder is designed and manufactured to print 
composite PLA using FFF technique. However, we 
can also propose to deal with other design and process 
parameters in order to solve this kind of problems. For 
example, Figure 10 shows two different rafts used for 
the same output geometry (Figure 10A for a pure PLA 
material, while Figure 10B for PLA with wood fibres). 

In the case of composite PLA materials, in addition 
to the change of raft geometry, higher temperatures are 
needed for the preheating stage. Several studies can be 
carried out to provide the effective design and process 
parameters in order to reduce the likelihood of failure. 
In this way, we reduce the construction cost without 
designing a new extruder form or a new machine 
element.

In addition to international standard establishments, 
there is a need to develop failure models to predict the 
tensile behavior of additively manufactured specimens, 
which can lead to manage a big amount of data. 
Advanced technologies based on machine learning 
are needed to treat different types of data (numerical 
values, texts, images ...) with the object of defining 
the best strategies and standards for AM-PLA using 
FFF. According to the study objective, several types 
of machine leaning can be found in the literature[92-96]. 
For example, in additive manufacturing, when training 
a model to diagnose a failure case from imaging data, 
we must label each failure case. Here, a binary label 

(failure/no failure) for each case can be obtained. This 
is called a supervised machine learning model, and the 
supervision comes in the form of the provided labels. 
The machine learning model task is then to predict the 
label of new cases based only on the given data features. 
On the other hand, it is possible to not have any labels, 
or to not even know what task we need to perform with 
this data. We just need to examine the data and learn 
something about the data structure and the relationships 
between the different failure cases. In such cases, an 
unsupervised machine learning model can be used. 
However, according to the data type, new classifications 
can appear. Here, simple machine learning (or numeric 
machine learning) is mainly used to deal with numeric 
data (tables ...) and deep machine learning (or deep 
learning[97]) is used principally to deal with images. 
Figure 11 shows a diagram to implement deep machine 
learning strategy to deal with several failure images in 
additive manufacturing. As shown in Figure 11, each 
image (such as image (a)) is divided into small parts in 
order the register information about each part. When 
increasing the number of images (data), we improve the 
resulting trained model. In deep machine learning, the 
features are learned as a result of the training process 
(or learning process). As illustrated in Figure 8, when 
introducing a new image (image (b)) as input, neural 
networks (several types of layers)[97-99] are used to make 
a prediction (to identify what the object is). So, for the 
input image (b), it is recognized as a failure case. So, the 
goal of deep machine learning is to carry out end-to-end 
learning (feature extraction and classification).

Finally, we must mention that at an advanced 
development stage, a reinforcement machine learning 
(or reinforcement learning)[100-102] can be used to make a 
decision in each situation (to stop, continue or to modify 
AM process parameters). For example, when identifying 
a failure case as shown in Figure 11, the single option 
is to stop the AM process. Otherwise, the process will 
continue to the end and lead to a waste of material and 
time (high costs). Figure 12 shows an example (same 
product) of a failure case without surveillance. In 
addition, it may not only concern the waste of material 
and time, but the failure consequences may affect 

Figure 9. Failure cases for a) composite AM-PLA and 
b) homogenous AM-PLA using FFF(image belongs to a 
product existing in 3d-printing-4u.com).

Figure 10. Different raft dimensions for composite AM-
PLA using FFF(image belongs to a product existing in 
3d-printing-4u.com). A: A pure PLA material; B: PLA with 
wood fibres.

A B A B
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Figure 11. Deep machine learning diagram for AM-PLA using FFF (images A and B belong to a product existing in 
3d-printing-4u.com).

Figure 12. Failure case without machine surveillance for 
AM-PLA using FFF (image belongs to a product existing 
in 3d-printing-4u.com).

the performance of some machine components such 
as removing the build platform, even affecting other 
printing elements (filament tube and/or its clamp, glide 
tracks, door...).

So, there is a strong need to integrate these machine 
learning technologies which can be considered as heart 
components of Artificial Intelligence (AI)[103-105], in order 
to pave the way to industrialize the AM-PLA using FFF 
since the material itself and the applied FFF process 
have many advantages and applications in AM fields.

9 CHALLENGES, ISSUES, AND FUTURE PERSPECT 
-IVES

According to Lens’s website (www.lens.org), a 
simple trend analysis shows that the total number of 
publications in this topic during the last three decades, is 
only 21 publications (2 books, 2 conference proceeding 
papers and 17 journal articles). The first journal article 

has been published in 2016, which means that the real 
start of this topic began few years ago (20 publications 
from 2016). To guarantee the continuity of this topic, we 
have to define the different issues and challenges related 
to it. So, we consider here that the main issue is related 
to the uncertainty identification (failure causes and 
consequences) with the object of reducing the rates of 
different failure scenarios. This problem leads to a waste 
of materials and time (high cost) and affects the final 
product quality. The challenges can then be represented 
by reduction of cost, reduction of material consumption, 
and improvement of quality. Therefore, there is a strong 
need to increase the efforts of developing advanced 
techniques to overcome the different challenges in this 
complicated topic which combines several research 
areas (additive manufacturing, PLA, FFF (or FDM) 
and uncertainty). Previously, the reduction of cost, 
waste of materials, time, ... were related to optimization 
techniques. However, the automation and artificial 
intelligence techniques are also helpful to overcome 
these challenges and issues. As result, when overcoming 
the different challenges, we provide several ways to 
industrialize the AM technology, at least in the current 
topic applications.

10 CONCLUSION
The current review has main objective to provide 

the newcomers to this area with a roadmap to develop 
new strategies to contribute to the industrialization of 
AM technology, especially the additively manufactured 
PLA material by FFF technique. Several issues can be 
found to prevent the industrialization of AM technology. 
One of these issues is the high failure rate which leads 
to increase the total cost. In addition to the productivity, 
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the total cost can be considered as a big obstacle to 
industrialize the AM technology. Therefore, the different 
uncertainty cases should be first identified and next 
treated to reduce the likelihood of failure. For future 
developments in AM-PLA using FFF, FMEA (Failure 
Modes and Effects Analysis) and FMECA (Failure 
Mode, Effects and Criticality Analysis) strategies can 
first integrated to improve the FFF process when dealing 
with AM-PLA. Next, the different components of 
artificial intelligence such as machine learning types, are 
needed to be closer to a sustainable environment.
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