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Abstract
Nance-Horan syndrome (NHS) represents the uncommon X-linked genetic disease with the features of 
congenital cataracts, tooth deformities, mental retardation along with facial deformities. It is mostly caused 
by small insertions, deletions, and nonsense mutations of NHS gene on Xp22.13, which may cause the 
NHS protein truncation. The present work discovered the 1.62-Mb microdeletion on Xp22.13 through 
copy number variation sequencing in a China girl with NHS syndrome, which included these genes: NHS, 
Cyclin-dependent kinase-like 5, Scm polycomb group protein like 2, Retinoschisin1, Scm polycomb group 
protein like 1, RALBP1 associated Eps domain containing 2, and Retinoic acid induced 2. Her parents 
did not find the microdeletion of Xp22.13, which was a novel microdeletions of Xp22.13 will cause 
haploinsufficiency of flanking genes, non-random X chromosome inactivation may increase the X-linked 
disease risk.

Keywords: Nance-Horan syndrome, copy number variation sequencing, Xp22.13 microdeletion, mental 
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1 INTRODUCTION
Nance-Horan syndrome (NHS) [MIM 202350], with the 

features of congenital cataracts in both eyes, dysmorphic 
facial features, dental abnormalities like bud molars or 
screwdriver-shaped teeth, with occasional brachymetacarpia 
and mental retardation, represents the uncommon X-linked 
recessive hereditary disorder initially put forward in 1974 
by Nance et al[1]. NHS gene is mapped onto Xp22.13 at 

the interval of 1.3-Mb[2]. Its gene includes the genomic 
DNA (gNDA) of 650kb, which encodes one candidate 
nuclear protein of 1,630 amino acids. Research discovers 
a complex expression pattern of temporal and spatial 
regulation, accompanied by pleiotropic characteristics in 
NHS, indicating the role of the gene in regulating eye, 
teeth, craniofacial and cerebral development[3]. NHS can be 
inherited on the X chromosome, and female heterozygous 
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carriers typically show a close yet moderate phenotype 
to infected men[4,5], usually with posterior Y-suture lens 
opacities and innate cortical riders, with no congenital 
cataract[6].

The present work clinically and genetically analyzed the 
1.62Mb aninterstitial microdeletion on Xp22.13 detected 
by next generation sequencing in a 7 years old girl, who 
showed severe mental retardation, cataract, abnormal 
tooth development, low muscle tone, and severe epilepsy. 
The parents were not found to have chromosome copy 
number variation (CNV), as a result, X-linked deletion was 
derived from her daughter de novo. Furthermore, the girl’s 
cytogenetic analysis revealed an apparently karyotype of 
46, XX, t(17; 18)(q23; p11.3) that was transmitted from the 
carrier mother

2 CASE PRESENTATION
2.1 Clinical Report

A 7 years old girl. It is the third birth of her mother, full 
term delivery, birth weight 3.1kg, no asphyxia. The fundus 
screening after birth diagnosed congenital cataract in her 
right eye (Figure 1). When she was 5 months the epilepsy 
began. After the antiepileptic treatment, the frequency of 
seizures and clinical symptoms have not been significantly 
improved (3-4times/day, 2-3min/time). The child’s 
psychomotor development is seriously backward. She 
can’t lift her head, turn over, sit, stand, walk or speak. Her 
hands can’t grasp. She neither knows her family nor have 
eye contact. Physical examination: body length 120cm, 
weight 10.5kg (<3SD), underdeveloped, poor nutrition, 
flat occipital fovea, congenital cataract in the right eye, 
large teeth gap, cardiopulmonary (-), low muscle tension 
of limbs, weak tendon reflex. Auxiliary examination: no 
obvious abnormality was found in chest X-ray, abdominal 
ultrasound, cardiac ultrasound and head magnetic resonance 
imaging. The parents were healthy, married without close 
relatives, denied the history of infectious diseases during 
pregnancy, denied the history of radiation exposure and 
family genetic history. With the approval of hospital 
medical ethics committee (No. 20220165) and the informed 
consent of the parents of the children, the peripheral blood 
samples of the children and their parents were collected for 
G-banding karyotype analysis, CNV sequencing (CNVseq) 
and fluorescence quantitative polymerase chain reaction 
(PCR) analysis.

3 MATERIALS AND METHODS
3.1 Chromosome Analysis

By adopting standard cytogenetic approaches, this work 
cultivated peripheral blood in serum-free lymphocyte 
medium for a 72-h period. Later, G-banding was adopted 
in chromosome analysis with trypsinization as well 
as Giemsa’s staining. This work utilized altogether 20 
metaphase spreads for analysis[7], and depicted karyotypes 
in line with the international system for human cytogenomic 

nomenclature (ISCN 2016).

3.2 Detection of Chromosomal CNVseq by Low Cover- 
age Whole Genome High Throughput Sequencing

This work conducted CNVseq for detecting chromosome 
anomaly by low-coverage whole genome sequencing. In 
brief, gDNA was confirmed through 2 approaches together: 
(1) 1% agarose gels were utilized in DNA decomposition as 
well as contamination; (2) Qubit DNA assay kit was utilized 
to determine DNA contents with Qubit 2.0 Flurometer (Life 
Technologies, CA, USA). Thereafter, CLEANNGS DNA 
kit was adopted to produce sequencing library in line with 
specific protocols, followed by addition of index codes into 
every specimen. Later, by adopting Novaseq 5000/6000 
S4 Reagent Kit (Illumina), those index-coded specimens 
were clustered onto the cBot cluster generation system in 
line with specific protocols. Following cluster production, 
Illumina NovaSeq 6000 platform was employed to 
sequence DNA libraries to generate the 150bp paired-
end reads. Through primary quality control, this work first 
processed fastq-format raw reads. Then, BWA software was 
employed to compare clean reads against reference human 
genome (UCSC hg19), following by conversion of results 
to the bam format as well as sorting with samtools software. 
At last, basic information was statistically analyzed and 
compared. Thereafter, SNP/InDels were identified with 
Verita TreKKer. CNVs were detected by BIC-Seq and 
CNVnator, whereas SVs were discovered by Manta. 
Enliven was performed to do annotation for SNP/InDels/
CNV/SV.

gNDA extraction Kit produced by Qiagen company 
in Germany was utilized to extract gDNA in line with kit 
protocols. DNA concentration was controlled at 50-250ng/
μL. Then, sequencing libraries constructed were sequenced 
on the next-Seq CN500 platform. The sequencing results 
were analyzed, and each sequencing read was matched to its 
chromosome. Then the corresponding standardized Z-value 
analysis was done, and the chromosome abnormality was 
determined by Z-value. The clinical significance of CNV 
was determined by searching decipher, OMIM and DGV 
databases.

3.3 Fluorescence Quantitative PCR
Fluorescence quantitative PCR detection according to the 

results of high-throughput sequencing, the deletion region 
of the fragment was selected for fluorescent quantitative 
PCR verification. ABI7500 fluorescent quantitative PCR 
was used for relative quantitative analysis.

4 RESULTS
The cytogenetic analysis revealed an apparently 

karyotype of 46, XX, t (17;18) (q23;p11.3), which was 
inherited from her mother (Figure 2).

We found that there were 2 chromosomal copy variant 
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Figure 1. Image of fundus screening of the patient.

Figure 2. One balanced translocation that involved chromosomes 17 and 18 was identified by chromosome G-banding 
analysis within the child and her mother.

loci were detected by CNV-seq (Figure 3) with the 
first deletion being at nucleotide positions 17160001-
18780000 (GRCh37/hg19 assembly), which were 
matched with cytogenetic band Xp22.13. Its deletion 
length was predicted to be 1.62Mb, which involved 
these genes: NHS [OMIM:300457], Cyclin-dependent 
kinase-like 5 (CDKL5) [OMIM:300203], SCML2 
[OMIM:300208], Retinoschisin1 (RS1) [OMIM:300839], 
SCML1 [OMIM:30027], RALBP1 associated Eps domain 
containing 2 (REPS2) [OMIM:300317], Retinoic acid 
induced 2 (RAI2) [OMIM:300217]. The second one was on 
nucleotide positions 22540001-22960000l (GRCh37/hg19 
assembly), which were matched with cytogenetic band 

14q11.2. Its deletion length was predicted to be 0.42Mb, 
referring to relevant literature and databases, there was no 
gene in this region and it was polymorphic. Her parents did 
not find the microdeletion of Xp22.13. The chromosome 14 
polymorphism was inherited from his father.

The results of fluorescence quantitative PCR were based 
on the ALB gene as the internal reference, and the NHS and 
CDKL5 genes located in the Xp22.13 region were selected 
for primer design. Normal control samples and child and 
parents samples were tested by fluorescence quantitative 
PCR in the same group. Consequently, the NHS and 
CDKL5 genes to normal control copy number ratio was 
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Figure 3. The identification of 1.62Mb at Xp22.13 (17160001-18780000) (GRCh37/hg19) by CNV-seq showing the 
microdeletion (A) and an interstitial microdeletion at 14q11.2 was identified by CNV-seq (B).
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about 0.5, with loss of heterozygosity. The copies of the 
genes in this region were normal in both parents, suggesting 
that the chromosomal deletion was new (Figure 4).

Figure 4. QF-PCR result showing heterozygous deletion 
of NHS and CDKL5 genes in the affected subject.

5 DISCUSSION
Genetic factors account for 40% of developmental delay/

metal disability, of them, chromosomal anomalies occupy 
25%[8]. G-banding karyotype analysis is a routine clinical 
cytogenetic diagnosis method. But <5Mb duplications and 
deletions cannot be detected even with high-resolution 
G-banding. Detection rate of conventional G-banding 
techniques for mental retardation, organ malformation, 
and growth retardation caused by a relatively small range 
of chromosomal imbalance aberrations is only 15% to 
40%, and the missed diagnosis rate is as high as 60% to 
85%[9,10]. High throughput sequencing technology can 
detect chromosomal aberrations and gene CNVs at the 
submicroscopic level with high resolution, high throughput 
and high accuracy, which improves the diagnostic efficiency 
of genetic diseases.

The balanced translocation of this case was inherited 
from the mother, which did not lead to the deletion and 

duplication of clinically significant genetic material. 
Therefore, balanced translocation is not the cause of a 
series of clinical manifestations. Molecular genetic testing 
found that there was a 1.62mb deletion at p22.13 on the 
X chromosome of the child, including NHS, CDKL5, 
Scm polycomb group protein like 2 (SCML2), RS1, Scm 
polycomb group protein like 1 (SCML1), REPS2, RAI2 
genes. According to Van Esch et al.[11] and Mathys et al.[12], 
2 distinct male children showing close phenotypes were 
identified, and they carried the 2,8-MB microdeletion on 
Xp22.13. The two microdeletions contain CDKL5 and 
NHS genes. It was worth noting that such cases exhibited 
innate cataract in both eyes, epileptic encephalopathy, 
dental abnormalities and Fallot tetralogy. Liao et al.[13] and 
Accogli et al.[14] described three brothers developing NHS 
who carried one microdeletion on Xp22.13. Apart from 
characteristic NHS phenotype, these patients exhibited 
global developmental retardation and hypotonia. The 
main manifestations of our patient were congenital 
cataract, special facial features (narrow and long face, 
prominent nose, etc.), abnormal teeth, intellectual disability, 
nystagmus, finger deformities, etc., which were consistent 
with NHS. At the same time, the patient also had severe 
early-onset intractable epilepsy, no speech function, severe 
psychomotor retardation, hypotonia, etc. Notably, our 
patient was a girl, which was rare in previous reports.

After querying ClinGen database resources, 
pathogenicity of insufficient haploid doses of NHS [ISCA-
35637] and CDKL5 genes [ISCA-14810] was supported 
(haploinsufficiency score: 3). Khan et al.[6] found the new 
mutation on NHS (p.Lys744AsnfsX15 [c.2232delG]) 
from 7 cases developing infantile or innate cataract, such 
as long face, bulbar nose and dentition abnormalities, and 
the mutation could also be seen among 4 asymptomatic 
female children who had Y-centered lens opacities, rather 
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than in additional 2 asymptomatic females or 3 males with 
clear lenses. Using whole exome sequencing, Tian et al.[15] 
found that NM_198270: c.1045 + 2T >A, a donor splicing 
site mutation in NHS gene was the pathogenic mutation 
for the NHS family, carrier females had no obvious 
abnormality in intelligence, facial features, nystagmus, 
microcornea, strabismus and high myopia, while cataract 
was not seen because of cataract surgery before this work. 
One female carrier, who carried c.263_266delCGTC 
(p.Ala89TrpfsTer106), the new NHS gene small deletion, 
had bilateral posterior Y-suture lens opacities and slight 
dental anomalies[16]. Miller et al.[17] described NHS gene 
disruption because of balanced translocation t(X;19)
(Xp22.13;q13.1), which was the specific pathogenesis 
of NHS referred NHS gene’s dose effects on phenotype 
expression and manifestation, besides, female carriers 
showed congenital cataracts and Glaucoma. Maortua et 
al.[18], Bahi-Buisson et al.[19] and other authors[20,21], who 
associate CDKL5 gene mutations with various overlapping 
phenotypes, from autism and mental retardation to RTT 
with epilepsy phenotypes. Mei et al.[22] also showed that 
CDKL5 gene deletion/duplication may be the main cause of 
girls’ early refractory seizures (unknown etiology).

Therefore, the clinical manifestations of the patient 
in this study may be related to the haploinsufficiency 
of NHS and CDKL5 gene, there is no additional gene, 
which can possibly affect the affected girl health and 
clinical manifestations. Retinoic acid (RA) participates in 
regulating early embryogenesis and cell differentiation, 
while RAI2 gene deletion has been elucidated that, the 
decreased RA signaling induces early cardiac defects in 
diverse animal models as well as mammalian embryos, 
and also lead to intellectual impairment[23]. REPS2 gene 
shows up-regulation within brain tissues and is associated 
with signaling pathway that involves small GTPases in Rho 
family, haploinsufficienc of REPS2 gene may also lead to 
mental retardation[13]. The SCML1 gene was preferentially 
located within testicular germ stem cells, which regulates 
the ubiquitination of histone H2A to establish male 
germline epigenome[24], so the impact on girls may be 
small. According to map location and homology analysis, 
SCML2 was the possible gene related to Xp22-linked 
developmental disorders, like oral-facial-digital type I 
syndrome[25]. According to Huopaniemi et al.[26], RS1 gene 
expression levels within different uterine and placental cells 
were analyzed, as a result, apart from retina, RS1 expression 
could be detected within the uterus. Consequently, 
RS1 protein may be related to embryonic survival and 
implantation.

6 CONCLUSION
Clinical manifestations caused by Xp22.13 microdeletion 

are complex and diverse. In the future, more investigations 
should be conducted for defining the Xp22.13 microdeletion 
phenotypic range, and the appropriate gene functions at the 

specific locus should be specified.
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