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Abstract
Objective: This study aims to rank friction stir welding parameters using the analytic hierarchy process 
(AHP).

Methods: The proposed approach includes two phases to achieve a general ranking of the parameters 
through the separate estimation of their weights on each metal type and aggregation. The criteria used in 
the AHP for ranking are the contribution percentages and the degrees of the parameters obtained from the 
analysis of variance of experimental studies. The data were obtained from literature that used the design of 
experimental arrays to optimize these parameters on multiple properties and many similar and dissimilar 
metals. Fourteen parameters were assigned in the present analysis, namely rotational speed (RS), traverse 
speed (TS), axial force (AF), pin profile (PP), tilt angle (TA), the ratio between shoulder diameter and pin 
diameter (D/d ratio), shoulder diameter (SD), pin diameter (Pd), plunge depth (PD), pin length (PL), tool 
offset (TO), shoulder concavity (SC), number of passes (NOP) and base metal side (BMS).

Results: The parameters were classified into highly significant, moderately significant, and insignificant 
based on their rankings. The RS, TS, TA, and PP were the highest-ranking parameters with a total 
contribution of 83.4% to outputs. The insignificant parameters included the D/d ratio, BMS, SC, AF, and 
Pd, with a low total contribution of 14%. The moderately significant parameters were the TO, NOP, SD, 
PD, and PL.

Conclusion: The above-mentioned significant parameters could be controlled to maximize the response. 
The failure to achieve the target specified in the standard by controlling only highly significant parameters 
signifies a need for further modification of the FSW process. Therefore, parameters of moderate 
significance are potential parameters that need to be controlled to achieve the target. To limit the selection 
between these parameters, reference should be made to the type of metal used and then the parameters 
with the greatest impact on the metal are selected, i.e. controlling PL for aluminum, NOP, and SD for 
magnesium, and TO for aluminum-to-steel and aluminum-to-copper.

Keywords: friction stir welding, optimization, analytic hierarchy process, ultimate tensile strength, 
orthogonal arrays, analysis of variance
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1 INTRODUCTION
Friction stir welding (FSW) is a modern consolidating 

technique in which a rotating profiled tool consisting of 
a shoulder and a pin is used for heat generation. The tool 
is plunged into clamped materials at an extremely small 
thinning of 0.1-0.2mm. The friction and axial force (AF) 
play a crucial role in the heat generation, and a solid-state 
joint is achieved through traversing the tool in the direction 
of the required weld path. The shoulder yields the most 
frictional heat required to plasticize the materials, and the 
pin completes the heat generation in the base region and 
stirs the plasticized materials from side to side to perform 
consolidation. Immense challenges exist in joining soft 
metals that are susceptible to fusion problems, such as 
aluminum alloys, and in joining dissimilar metals due to 
their plain difference in physical properties and melting 
temperatures. FSW exhibits great success in various 
industries, such as automotive, marine, and aerospace, due 
to its distinct features and benefits over fusion processes. 
Solid-state techniques such as FSW are available to 
overcome various flaws related to fusion processes, such as 
hot cracking, distortion, and porosity. FSW performs under 
the melting temperature, about 10-20%, of the materials[1] 
and has been vastly utilized for welding similar or dissimilar 
metals for aluminum and its alloys[2-45], titanium alloys[46], 
magnesium alloys[47-52], steel and its alloys[53,54], copper and 
its alloys (i.e., brass)[55,56], dissimilar joints of aluminum 
to copper or brass[57-65], aluminum to steel[66-72], aluminum 
to magnesium[73], and steel to copper[74]. These metals are 
regarded as hard to weld by traditional fusion processes.

The FSW parameters contribute to the formation of 
the weld zone, which influences the microstructures and 
mechanical properties of the joints. The optimization of 
FSW parameters secures the optimum properties of the 
joints. Optimization of the parameters has been conducted 
using various methods, such as the design of experiments 
(DOE)[4], response surface methodology (RSM)[2], fuzzy-
logic technique[75], and artificial neural network[76]. The DOE 
technique has been used to optimize the FSW parameters as 
it minimizes time and costs through a few trials. Orthogonal 
arrays, characterized by a small fraction of full factorial, 
are the main element of the DOE techniques. Analysis 
of variance (ANOVA) on the DOE arrays allows for the 
estimation of the significance and percentage of contribution 
of parameters on required effects[5]. 

In the present study, the FSW parameters were ranked 
and weighed using the Analytic hierarchy process (AHP). 
Fourteen parameters of FSW were assigned , namely 
rotational speed, rpm (RS); traverse speed, mm/min (TS); 
AF, KN; pin profile (PP), tilt angle (TA); the ratio between 

shoulder and pin diameters (D/d ratio); shoulder diameter 
(SD), mm (SD), pin diameter, mm (Pd); plunge depth, 
mm (PD); pin length, mm (PL); tool offset, mm (TO); and 
base metal side (BMS), based on tool rotation direction, 
no of passes (NOP), and shoulder concavity (SC). This 
study firstly ranked the parameters separately of each metal 
joining group based on the types of metals. Eight sets were 
selected, namely aluminum and its alloys[2-45], magnesium 
alloys[47-52], steel and its alloys[53,54], copper and its alloys (i.e., 
brass)[55,56], dissimilar joints of aluminum to copper and their 
alloys[57-65], aluminum alloys to steel alloys[66-72], aluminum 
alloys to magnesium alloys[73], and steel alloys to copper[74]. 
Each metal group had different combinations of optimized 
parameters. For each metal group, the ranking began 
on each combination of optimized parameters and then 
aggregated the weights of parameters of all combinations 
to obtain the overall ranking. Second, the general rank of 
FSW parameters was calculated by aggregating the weights 
of parameters of all metal groups. The final ranking was 
calculated regardless of the types of metals used in these 
joints.

The ranking process runs through several sections and 
steps. The first section is a data collection which includes 
two steps. The first step is to collect the DOE optimization 
studies of FSW parameters of all metal groups selected. 
The second step is to sort the literature according to the 
combinations of parameters considered in the optimization 
process for each metal group. The second section involves 
the AHP for FSW parameters, also including two steps 
(steps 3 and 4). The third step is to identify the criteria 
utilized to rank the parameters. The fourth step is to apply 
the AHP process for each metal group by establishing 
the relations between parameters, calculating the weight 
of each parameter on each combination, and ranking the 
parameters in each combination. The final section involves 
the aggregation process of weights and the overall ranking 
of the parameters on each metal joining group individually. 
Then, the general ranking of FSW parameters is obtained 
by aggregating the weights regardless of the metal types 
(aggregating the overall weights).

2 DATA AND METHODS
2.1 Data Collection 

Literature overviews of the optimization of FSW 
parameters for aluminum and its alloys[2-45], magnesium 
alloys[47-52], steel and its alloys[53,54], copper and its alloys 
(i.e., brass)[55,56], dissimilar joints of aluminum to copper 
and their alloys[57-65], aluminum alloys to steel alloys[66-72], 
aluminum alloys to magnesium alloys[73], and steel alloys 
to copper[74] are provided in Tables 1-8. It demonstrates the 
selected parameters in their optimization studies, percentage 
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of contributions % obtained, arrays used, alloys, thicknesses 
of materials, statistical DOE methods performed, and the 
efficiencies of responses (properties) acquired in these 
investigations. The data were gathered based on the studies 
that used only the design of experimental arrays to optimize 
these parameters on a response representing the quality 
of the joint. The constraints used to gather the data are 
summarized in Table 9. The optimum values obtained from 
the optimization studies for FSW parameters to maximize 
the responses are collected in Appendix 1.

The optimization studies were collected and then 
arranged in combinations according to the similarity of 
selected parameters to be optimized. This is accomplished 
for each metal joining group. The combinations of the 
considered parameters are listed in Table 10.

2.2 AHP for FSW Parameters
The more common uses of AHP are in industry and 

academia. It has earned considerable attention in numerous 
fields, such as machine or supplier selection and other 
resource prioritization. At every level of the hierarchy, by 
comparing each parameter or alternative with the other, 
AHP attempts to determine the weight of each component 
of a finding to select, evaluate, rank, or/and make a 
decision[77].

In summary, the AHP involves seven procedures as 
follows:
1.	 Generate pairwise comparisons based on the degree of 

importance of parameters relative to each other (A).
2.	 Calculate the normalizing matrix. Each component 

is divided by the sum of its column. The sum of each 
column is 1. 

3.	 Estimate the weight by averaging across the rows in the 
normalizing matrix (W).

4.	 Multiply each column of the pairwise comparison matrix 
by the corresponding weight Equation (1).

5.	 Calculate the eigenvector λ by Equation (2) and divide 
it by N (number of parameters) to obtain λAV as given in 
Equation (3).

6.	 Calculate the consistency index (CI) as given in Equation 
(4).

7.	 Check the Saaty ratio for consistency as given in 
Equation (5). If the ratio exceeds 0.1, the determination is 
considered to be significantly close to simple random and 
may require repeated estimation[77].

The percentages of contributions % and the degrees 
obtained from the ANOVA of the parameters are the two 
criteria used in the ranking process. Reliance on only the 
contribution percentages of the parameters extracted from 
the ANOVA tables may be inaccurate due to statistical 
errors obtained in these studies. Some of these studies 
exhibit relatively high statistical errors due to reasons 
such as inappropriate orthogonal arrays, neglect of the 
interaction between parameters, or/ and setting improper 
levels. Therefore, the second criterion is developed based 
on the degrees of the parameters in their ANOVA tables. 
As given in Table 11, each parameter is given a normalized 
contribution according to its degree.

The second normalized contribution is combined 
with the actual contribution percentage % to give the 
general rating or the average overall contribution. 
The pairwise comparisons are generated according 
to the differences between the overall contribution of 
the parameters. Table 12 illustrates an example of these 
measurements for one combination of the parameters, e.g., 
RS, TS, and AF. This combination relates to aluminum and 
its alloys joining group. For all other combinations of the 
optimized parameters, the measurements were similarly 
calculated.

After all measurements, the differences in the overall 
contribution percentages % between parameters range 
from 0 to 46 %. The degrees based on AHP between equal 
importance (1) and absolutely more important (9) are built 
according to these differences in the overall contributions. 
According to the measurements, the contribution of 5.75 
% is the transition value from a degree to a higher one of 
importance. If the value of the difference lies between two 
grades, the selection of the appropriate degree is determined 
based on the convergence of the contribution value from 
this degree. Figure 1 shows the AHP degrees of importance 
and their corresponding contributions. As depicted in Figure 
1, between degrees 1 and 2 as an example, if the difference 
in the overall contribution is more than 2.875%, the proper 
degree of the relation between two parameters is 2, and vice 
versa.

As represented in Table 12, the difference in overall 
contribution between RS and TS is 12.8725%, so the grade 
of importance between RS and TS is 3, indicating that 
the RS somewhat more important than TS. The AHP pair 
comparisons and normalized matrix for the combination 
of RS, TS, and AF are given in Tables 13 and 14. The 
other relationships are expressed in the same manner. The 
weights of RS, TS, and AF are 0.589, 0.159, and 0.251, 

http://image.innovationforever.com//file/20221026/93b75094a6a04b78868fedfb842bc032/Appendix 1.pdf
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Table 1. An Overview of the Literature on the Optimization for FSW Parameters of Aluminum and Its Alloys

References Base Metal 
(Thickness)

Array 
Level Par.

Optimized Parameters (Selected Contribution %) (Eff 
%)

UTSRS TS AF PP TA D/d 
ratio SD Pd PD PL TO BM- 

S

Abd Elnabi et 
al.[4]

AA5454/ 
AA7075
(3.5mm)

L16OA-27 √
9.08

√
16.93

√
0.11

√
2.09

√
12.47

√
6.91

√
2.31

85

Silva et al.[5] AA6082-T6
(3mm)

L9OA-35 √
5

√
5

√
4

√
14

√
9

76

Meengam et al.[6] AA6063
(6mm)

L64-43 √
1.95

√
35.2

√
24.78

82.95

Guo et al.[7] AA6061-T6
(6mm)

L9OA-33 √
27.85

√
3.64

√
68.41

84.1

Venkateswara 
Rao and Senthil 
Kumar[8]

AA6061/
AA2014
(10mm)

L27OA-35 √
35.29

√
1.59

√
2.57

√
9.85

√
11.60

71

Balamurugan et 
al.[9]

AA5052-H32/ 
AA6061-T6 

(5mm)

L27OA-33 √
12.7

√
2.3

√
82.17

N.A.

Saeidi
 et al.[10]

AA5083-H116/ 
AA7075-T6 

(5mm)

L9OA-32 √
7.85

√
90.96

Simoncini et 
al.[11]

AA6082-T6
(2mm)

L27OA-33 √
9.74 

√
30.32

√
53.23

69.4

Saravanakumr 
et al.[12]

AA7075/ 
AA6082 

(6.35mm)

L9OA-33 √
72.2

√
5.6

√
20.9

65.1

Shanavs 
et al.[13]

AA5052-H32
(6mm)

CCD/
L31-54

√
6.5

√
6.9

√
29.35

√
50.77

93.51

Ghaffarpour et 
al.[14]

AA5083-H12/
AA6061-

T6(1.5mm)

BBD
L29-34

√
69.02

√
29.1

√
0.66

√
0.45

72.4

Rajendran et 
al.[15]

AA2014-T6
(2mm)

CCD/
L30-54

√
28.49

√ 
22.05

√
33.01

√
16.46

N.A.

Chanakyan et 
al.[16]

AA6082
(6mm)

Face 
CCD/
L20-33

√
9.35

√
4

√
14.87

71.8

Vijayan et al.[17] AA5083
(5mm)

GRA/
 L9OA-33

√ 
45.6

√ 
6.9

√
41.1

92.5

Chien et al.[18] AA5083
(3mm)

GRA/ 
L16OA-44

√
6.76

√
9.08

√
2.79

√
48.95

N.A.

Raj 
et al.[19]

AA3103/ 
AA7075 (6mm)

L9OA-33 √
15.59

√
69.43

√
0

N.A.

Haribalaji et 
al.[20]

AA2014/ 
AA7075
(4mm)

L27OA-35 √
13.3

√
0.11

√
6.5

√
37.9

√
31.14

49.7

Shunmugas- 
undaram et al.[21]

AA6063/ 
AA5052
(8mm)

L9OA-33 √
33.47

√
7.8

√
28.15

N.A.

Umanath
 et al.[22]

AA6063
(6mm)

CCD/
L20-53

√
30.59

√
32.4

√
37

N.A.

Koilraj
 et al.[23]

AA2219-T87/ 
AA5083-H321 

(6mm)

L16OA-44 √
10.26

√
3.88

√
12.92

√
66.56

90

Pitchipoo 
et al.[24]

AA6082-T6
(5mm)

L9OA-33 √
27.79

√
4.70

√
61.82

75.6

Pitchipoo et al.[25] AA5083-O/ 
AA6063-T6 

(6mm)

GRA/ 
L27OA-34

√
30.70

√
42.80

√
25.93

√
0.57

75
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Bruce et al.[26] AA6061-T6/ 
AA5052 (4mm)

BBD/
L17-33

√
7.47

√
5.47

√
6.34

N.A.

Abolusoro et 
al.[27]

7075-T651 /
6101-T6 (6mm)

L16OA-42 √
63

√
37

85.5

Farzadi 
et al.[28]

AA7075-T6
(5mm)

Rotatable
CCD/
L36-54

√
33.55

√
28.18

√
13.46

√
6.43

94

Tamjidy et al.[29] AA6061-T6/ 
AA7075-T6 

(6mm)

CCD/
L30-54

√
31.55

√
29.84

√
15.48

√
22.83

81.30

Pate et al.[30] AA2024/ 
AA6061
(4mm)

L11-33 √
35

√
24

√
27

75.3

Jia et al.[39] AA5052-H32
(1mm)

L9OA-33 √
5.5

√
11.5

√
51

80.7

Sagheer-Abbasi 
et al.[31]

Al-Ce-Si-Mg
(6mm)

L9OA-33 √
29

√
22

√
41

52.3

Vijayan
et al.[33]

AA2219-T81
(6.25mm)

L9OA-34 √
81.87

√
0.25

√
16.71

√
0.93

66.4

Vijayan 
 et al.[33]

AA6061/ 
AA6082
(7.5mm)

GRA/ 
L9OA-33

√
96.24

√
0.41

√
0.06

92.4

Kumar et al.[34] AA 5059
(4mm)

Face 
CCD/
L20-53

√
31.20

√
47.43

√
21.39

76.3

Palanivel1 et 
al.[35]

AA6351 T6/ 
AA5083H111 

(6mm)

Rotatable
CCD/
L31-54

√
29.05

√
21.75

√
23.1

√
26.28

88.6

Ahmadnia et 
al.[36]

AA6061/ 
AA5010
(3mm)

CCD/
L20-53

√
43.39

 √
32.3

√
24.34

67

Sefene et al.[37] AA6061
(5mm)

GRA/ 
L9OA-33

√
64.21

√
27.49

√
0

92.25

Hasan et al.[38] AA7075-T6/
AA6061-T6 (3 

mm)

CCD/
L31-54

√
12.57

√
18.42

√
57

√
12.1

82

Jia et al.[39] AA6061-T6
(3mm)

L9OA-33 √
37.57

√
42.92

√
10.62

94

Mohammadi et 
al.[40]

5052-H18
(2mm)

L29OA-34 √
51.99

√
3.1

√
2.05

√
1.69

85.76

Sarsılmaz and 
Çaydaş et al.[41]

AA 1050/AA 
5083

(6mm)

FFD
18-32*21

√
71.62

√
10.59

√
7.03

N.A.

Lakshminara- 
yanan et al.[42]

RDE-40
Al-Zn-Mg 

(6mm)

L9OA-33 √
41.30

√
33.25

√
20.76

81.2

Murali
et al.[43]

AA2024 -T6 /
AA 6351-T6 

(5mm)

L27OA-33 √
67.31

√
13.70

√
14.50

78.9

Serio et al.[44] 5754-H111
(6mm)

L4OA-22 √
45.02

√
21.04

78.7

Abd Elnabi et 
al.[45]

AA5454/ 
AA7075
(3.5mm)

L12OA-27 √
5.34

√
13.66

√
3.8

√
5.69

√
2.97

√
13.47

√
12.57

84.5

*Discover abbreviations on the complete list of abbreviations.

respectively. In this combination, the ranks of RS, TS, and 
AF are 1, 3, and 2, respectively. The consistency ratios were 
checked using the division between consistency index and 

random index (given in Table 15). The consistency ratio CR 
scores 0.027 (<0.1) suggesting a consistent comparison. In 
the following Figures, the relation (degree of importance) 
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Table 2. An Overview of the Literature on the Optimization for FSW Parameters of Magnesium Alloys

References Base Metal
(Thickness)

Array 
Level Par.

Optimized Parameters 
(Selected Contribution %) (Eff %)

UTS
RS TS AF PP TA SD Pd PD NOP SC

Sahu and 
Pal [47]

AM20
(4 mm)

GRA
L18OA-(33*21)

√
3.04

√
3.47

√
26.56

√
8.94

66.8

Haribalaji 
et al.[48]

AZ61A
(6mm)

L27OA-35

S/N ratio
√

6.55
√

28.15
√

13.8
√

5.47
√

34.6 -

Prasath
et al.[49]

AZ 31/ 
ZM21
(5mm)

GRA
L9OA-33

√
19.56

√
21.81

√
56.95 -

Senthilraja 
et al.[50]

AZ91D 
(6mm)

L9OA-33 √
44.38

√
36.17

√
16.89 95.7 

Kumar
et al.[51]

AZ91D 
(6mm)

L9OA-33 √
15.1

√
26.7

√
41.3 124 

Asadi
et al.[52]

AZ91 
(5mm)

L27OA-38

S/N ratio
√

14.92
√

30.59
√

19.06
√

5.15
√

19.88
√

1.69
√

6.39
√

2.28 -

Table 3. An Overview of the Literature on the Optimization for FSW Parameters of Steel and Its Alloys

References Base Metal (Thickness) Array Level Par.
Optimized Parameters (Selected Contribution %) (Eff %)

UTSRS TS TA SD

Siddiquee et al.[53] AISI-304 Stainless steel 
(2.95mm)

L4OA-23 

S/N ratio
√

15.73
√

56.83
√

27.44 -

Pradeep et al.[54] Low alloy steel 3039 
grade II 
(3mm)

L9OA-33 √
2.81

√
32.83

√
63.46 -

Table 4. An Overview of the Literature on the Optimization for FSW Parameters of Copper and Its Alloys (i.e., brass)

References Base Metal 
(Thickness) Array Level Par. 

Optimized Parameters (Selected Contribution %) (Eff %)
PropertiesRS TS SD NOP

Meena et al.[55]  Brass (CuZn40)
(3mm)

L9OA-33

S/N ratio
√

24.48
√

38.11
√

37.135
HRB
135

Renani et al.[56] Pure copper- Lap 
joint (5mm) 

GRA
L8OA-23

√
31.42

√
27.32

√
27.99

Shear strength
-

*Discover abbreviations on the complete list of abbreviations.

between two parameters is depicted by an arrow or a line. 
The arrow goes from the parameter with a higher importance 
degree over another. Also, the line denotes an equal degree 
of importance between the parameters. The relations and 
the degrees of importance of the optimized two-three, four, 
five, and seven parameters for aluminum and its alloys are 

Figure 1. The AHP degrees of importance and their corres- 
ponding percentages of contributions.

depicted in Figures 2-5. The relations and the degrees of 
importance of the optimized three, four, and five parameters 
for magnesium alloys are in Figure 6. Also, the relations and 
the degrees of importance of the optimized eight parameters 
are in Figure 7. The relations and the degrees of importance 
of the optimized three parameters for steel and its alloys 
are depicted in Figure 8A. The relations and the degrees of 
importance of the optimized three parameters for copper 
and its alloys (i.e., brass) are in Figure 8B. The relations 
and the degrees of importance of the optimized two, three, 
four, and five parameters for dissimilar joints of aluminum 
to copper and their alloys are depicted in Figure 9. The 
relations and the degrees of importance of the optimized 
two, three, four, and five parameters for aluminum alloys to 
steel alloys are depicted in Figure 10. The relations and the 
degrees of importance of the optimized three parameters 
for aluminum alloys to magnesium alloys are in Figure 
11A. The relations and the degrees of importance of the 
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Table 6. An Overview of the Literature on the Optimization for FSW Parameters of Aluminum Alloys to Steel Alloys

References Base Metal
(Thickness) Array Level Par.

Optimized Parameters (Selected Contribution %) (Eff %)
PropertiesRS TS PP TA SD Pd TO

Sameer et al.[66] AA6082-T6/ 
DP600 dual steel 

(2mm)

GRA
L9OA-34

√
17.07

√
64.97

√
6.96

√
11

UTS 86.1

Chen et al.[67,68] AA6061/ SS400 
low carbon steel 

(6mm)

L18OA-
(33*21)

√
14.43

√
19.89

√
3.47

√
5.76

Charpy Impact
---

Goel et al.[69] AA 7475/ AISI 
304

(2.5mm)

L8OA-23

S/N ratio
√

42.19
√

38.96
√

12.60
UTS
75

Naghibi et al.[70] AA5052/ AISI 304
(3mm)

L27OA-33 √
51.05

√
33.9

√
7.17

UTS
84.4

Table 7. An Overview of the Literature on the Optimization for FSW Parameters of Aluminum Alloys to 
Magnesium Alloys

Reference Base Metal 
(Thickness) Array Level Par.

Optimized Parameters (Selected Contribution %) (Eff %)
UTSRS TS TA

Kumar et al.[73] AA6061/ AZ31B
(4mm)

L9OA-33

S/N ratio
√

17.88
√

49.91
√

30.61 -

Table 5. An Overview of the Literature on the Optimization for FSW Parameters of Dissimilar Joints of Aluminum 
to Copper and Their Alloys

References Base Metal
(Thickness) Array Level Par.

Optimized Parameters (Selected Contribution %)
(Eff %)

PropertiesRS TS PP TA D/d 
ratio SD PD TO

Elfar
 et al.[57]

Pure aluminum/ 
CuZn30
(5mm)

L9OA-34 √
2.30

√
64.30

√
31.96

UTS
50

Sharma et al.[58] AA6101/ Pure copper
(2.8mm)

L18OA (33*21)
S/N ratio

√
41.66

√
5.52

√
1.64

√
34.17

Elec-
conductivity

91.2

Sahu et al.[59] AA1050/ Pure copper
(4mm)

GRA/ L16O-44

S/N ratio
√

20.87
√

19.90
√

29.44
 √

10.32
UTS

-

Shojaeefard
et al.[60]

AA5083/ CuZn34
(2.5mm)

L9OA-33

S/N ratio
√
38

√
24.4

√
32.77

Shear strength
-

Kumar
et al.[61]

AA6101 / Pure copper
(6mm)

L16OA-25

S/N ratio
√

30.14
√

4.61
√

46.5
√

2.23
√

16.7
UTS
63.5

Sharma et al.[62] Al-6101 / Pure Cu
(2.8mm)

GRA
L18OA- (33*21)

√
71.53

√
14.66

√
0.475

√
5.12

UTS
81 

Panaskar et al. 
[63]

AA6063/ ETP copper
(3mm) L9OA-33

√
59.84

√
34.53 

The-conductivity 
140.4 

Sharma et al.[64] AA6101 / Pure Cu
(2.8 mm)

L9OA-33 √
27.57

√
56

√
15.27

UTS
-

Khalilpour- 
azar et al.[65]

AA5083 /CuZn34
(2.5 mm) Lap joint

GRA
L12OA- (31*41)

√
44.9

√
46.6

Failure load
-

Table 8. An Overview of the Literature on the Optimization for FSW Parameters of Steel Alloys to Copper

Reference Base Metal 
(Thickness) Array Level Par.

Optimized Parameters (Selected Contribution %) (Eff %)
UTS

RS TS TA

Jafari et al.[74] 304L stainless 
steel /copper

(3mm)

CCD/
L20-53

√
45.19

√
17.85

√
16.96 79.5
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Table 9. A Summary of Collected Data Limitations for Metal Joining Groups

Metal group

Constraints

Material Joint Material 
Thickness (mm) Type of Joint

Response
(M): Mean

(S/N ratio): Signal/Noise 

Number of 
Optimized 
Parameters

Aluminum and its 
alloys 

Similar Dissimilar 1-10 Butt (M) UTS 12

Magnesium alloys Similar Dissimilar 4-6 Butt (M) UTS
(S/N ratio) UTS

10

Steel and its alloys Similar 2.95-3 Butt (M) UTS 4

Copper and its alloys 
(i.e., brass) 

Similar 3-5 Butt
Lap

(S/N ratio) HRB
(M) shear strength

4

Dissimilar joints of 
aluminum to copper 
and their alloys 

Dissimilar 2.5-6 Butt
Lap

(M) UTS
(S/N ratio) UTS

(M) shear strength
(M) failure load

(M) thermal conductivity
(M) electric conductivity

8

Aluminum alloys to 
steel alloys 

Dissimilar 2-6 Butt (M) UTS
(S/N ratio) UTS

(M) Charpy impact

6

Aluminum alloys to 
magnesium alloys 

Dissimilar 4 Butt (S/N ratio) UTS 3

Steel alloys to copper Dissimilar 3 Butt (M) UTS 3

UTS : Ultimate tensile strength; HRB: Hardness B.

Table 10. A Detailed List of the Combinations of the Optimized Parameters for Each Metal Joining Group

Metal Group No. of
Studies

Total No. of 
Parameters

No. of 
Combinations Combinations of Parameters No. of Parameters 

in a Combination

Aluminum and its 
alloys

43 12 16 RS/TS
RS/TS/PP, RS/TS/TA,
RS/TS/PD, RS/TS/AF

RS/TS/PP/TA, RS/TS/SD/Pd,
RS/TS/TA/SD, RS/TS/TS/PL,

RS/TS/PP//D/d ratio,
RS/TS/TA/TO, RS/TS/AF/PP

RS/TS/PP/TA/TO,
RS/TS/TA/PL//D/d ratio,

RS/TS/AF/PP/TA
RS/TS/PP/TA/PD/BMS//D/d ratio

2
3

4

5

7

Magnesium alloys 6 10 6 RS/TS/PP
RS/TS/AF, RS/TS/NOP

RS/TS/SD/PD
RS/TS/AF/SD/Pd

RS/TS/PP/TA/SD/Pd/SC/ PD

3
3
4
5
8

Steel and its alloys 2 4 2 RS/TS/SD,
RS/TS/TA

3

Copper and its alloys 
(i.e., brass)

2 4 2 RS/TS/NOP,
RS/TS/SD

3

Dissimilar joints of 
aluminum to copper 
and their alloys

9 8 7 RS/TS
RS/TS/TA, RS/TS/SD,

RS/TS/TO
RS/TS/SD/TO, RS/TS/PD/TO

RS/TS/PP//D/d ratio/TO

2
3

4
5

Aluminum alloys to 
steel alloys

5 6 4 RS/TS/SD, RS/TS/TO
RS/TS/TA/Pd, RS/TS/TA/TO

3
4

Aluminum alloys to 
magnesium alloys

1 3 1 RS/TS/TA 3

Steel alloys to copper 1 3 1 RS/TS/TA 3

* Discover abbreviations on the complete list of abbreviations.
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Table 11. Normalizing Rate Based on the Number of Parameters

No. of 
Parameters

Normalizing

Degree

1 2 3 4 5 6 7 8

2 0.5 0.5

3 0.501 0.334 0.167

4 0.4 0.3 0.2 0.1

5 0.333 0.2667 0.2 0.1333 0.0666

7 0.25 0.2143 0.1786 0.1429 0.1071 0.071 0.0357

8 0.222 0.194 0.1667 0.139 0.111 0.083 0.0556 0.028

Table 12. The Differences in Overall Contributions between RS, TS, and AF Based on the Criteria Used

Ref. RS TS AF Error ∑

Normalizing

RS TS AF

1 16 9.35 4 14.87 71.78

100

0.334 0.167 0.501

2 17 45.6 6.9 41.1 6.4 0.501 0.167 0.334

3 22 30.59 32.4 37 0.01 0.167 0.334 0.501

4 34 31.2 47.43 21.39 0 0.334 0.501 0.167

5 42 41.3 33.25 20.76 4.69 0.501 0.334 0.167

6 43 67.31 13.7 14.5 4.49 0.501 0.167 0.334

∑ 225.35 137.68 149.62 ∑ 2.338 1.67 2.004

Avg.

37.5583 22.9467 24.9367

Avg. 0.38967 0.27833 0.334

1# % 2# % 38.9667 27.8333 33.4

∑ (1# % + 2# %) 76.525 50.78 58.3367

Avg. 38.2625 25.39 29.1683

Differences

RS-TS 12.8725

AF-TS 3.77833

RS-AF 9.09417

optimized three parameters for steel alloys to copper are in 
Figure 11B.

The ranking and estimated weights of all optimized 
parameters in all sixteen combinations for aluminum and 

Figure 2. The relations and the degrees of importance of 
the optimized two-three process parameters for aluminum 
and its alloys: RS/TS (A), RS/TS/PP (B), RS/TS/TA (C), RS/
TS/PD (D), and RS/TS/AF (E).

A B C

D E

Figure 3. The relations and the degrees of importance of the 
optimized four process parameters for aluminum and its 
alloys: RS/TS/PP/TA (A), RS/TS/SD/Pd (B), RS/TS/TA/SD (C), 
RS/TS/TS/PL (D), RS/TS/PP//D/d ratio (E), RS/TS/TA/TO (F), 
and RS/TS/AF/PP (G).

A B C

D E F

G
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Table 13. AHP Pairs Comparison in the Combination of RS/TS/AF from Aluminum and Its Alloys Group

No. Parameters Symbol RS TS AF

1 Rotational speed RS 1.00 3 3

2 Traverse speed TS 0.33 1.00 0.50

3 Axial force AF 0.33 2.00 1.00

  Total   1.66 6.00 4.50

Table 14. Normalized Matrix for RS/TS/AF Combination from Aluminum and Its Alloys Group

No. Parameters Symbol RS TS AF Total AVG Weight Consistency Measure

1 Rotational speed RS 0.60 0.50 0.67 1.77 0.5892897 3.09087474

2 Traverse speed TS 0.20 0.17 0.11 0.478 0.1593929 3.020721769

3 Axial force AF 0.20 0.33 0.22 0.75 0.2513174 3.04224306

Total 1.00 1.00 1.00

Lambda max λAV 3.031482415

CI 0.015741207

RI 0.58

CR Ratio 0.027140013

Table 15. Random Index (RI) Table

N 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.46

Figure 4. The relations and the degrees of importance of 
the optimized five process parameters for aluminum and 
its alloys: RS/TS/PP/TA/TO (A), RS/TS/TA/PL//D/d ratio (B), 
and RS/TS/AF/PP/TA (C). Figure 6. The relations and the degrees of importance 

of the optimized three-four-five process parameters for 
magnesium and its alloys: RS/TS/AF (A), RS/TS/NOP (B), 
RS/TS/PP(C), RS/TS/SD/PD (D), and RS/TS/AF/SD/Pd (E).

Figure 7. The relations and the degrees of importance of 
the optimized eight process parameters for magnesium 
and its alloys: RS/TS/PP/TA/SD/Pd/SC/PD.

Figure 5. The relations and the degrees of importance of 
the optimized seven process parameters for aluminum and 
its alloys: RS/TS/PP/TA/PD/BMS//D/d ratio.

A B C A B

C D

E

its alloys are given in Figure 12. The ranking and estimated 
weights of all optimized parameters in all six combinations 
for magnesium alloys are in Figure 13. The ranking and 
estimated weights of all optimized parameters in the two 
combinations for steel and its alloys are demonstrated in 

Figure 14A and 14B. The ranking and estimated weights 
of all optimized parameters in the two combinations for 
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Figure 8. The relations and the degrees of importance of 
the optimized three process parameters for steel and its 
alloys: RS/TS/SD (A), and RS/TS/TA (B), and for copper 
and its alloys: RS/TS/SD (C), and RS/TS/NOP (D).

Figure 9. The relations and the degrees of importance of 
the optimized two-three-four-five process parameters for 
dissimilar aluminum-to-copper and their alloys: RS/TS (A), 
RS/TS/SD (B), RS/TS/TO (C), RS/TS/TA (D), RS/TS/PD/TO (E), 
RS/TS/SD/TO (F), and RS/TS/PP//D/d ratio/TO (G).

Figure 10. The relations and the degrees of importance of 
the optimized two-three-four-five process parameters for 
dissimilar aluminum-to-steel and their alloys: RS/TS/SD (A), 
RS/TS/TO (B), RS/TS/TA/TO (C) and RS/TS/TA/Pd (D).

Figure 11. The relations and the degrees of importance 
of the optimized three process parameters for dissimilar 
aluminum-to-magnesium and their alloys: RS/TS/TA (A) and 
for dissimilar steel-to-copper and their alloys: RS/TS/TA (B)

A B

C D

A B C D

E F G

A B

C D

A B

copper and its alloys (i.e., brass) are shown in Figure 
14C and 14D. The ranking and estimated weights of 
all optimized parameters in all seven combinations for 
dissimilar joints of aluminum to copper and their alloys are 
shown in Figure 15. The ranking and estimated weights 

Figure 12. The ranks and estimated weights of all optimized 
parameters in the sixteen combinations for aluminum and 
its alloys: RS/TS (A), RS/TS/PP (B), RS/TS/TA (C), RS/TS/PD 
(D), RS/TS/AF (E), RS/TS/PP/TA (F), RS/TS/SD/Pd (G), RS/
TS/TA/SD (H), RS/TS/TS/PL (I), RS/TS/PP//D/d ratio (J), RS/
TS/TA/TO (K), RS/TS/AF/PP (L), RS/TS/PP/TA/TO (M), RS/TS/
TA/PL//D/d ratio (N), RS/TS/AF/PP/TA (O), and RS/TS/PP/TA/
PD/BMS//D/d ratio (P).

of all optimized parameters in all four combinations for 
aluminum alloys to steel alloys are given in Figure 16. The 
ranking and estimated weights of optimized parameters 
in the available combination for aluminum alloys to 
magnesium alloys are demonstrated in Figure 17A. The 

A B C

D E

F G

H I

J K

L M

N

O

P
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Figure 13. The ranks and estimated weights of all optimized 
parameters in the six combinations for magnesium and its 
alloys: RS/TS/NOP (A), RS/TS/AF (B), RS/TS/PP (C), RS/TS/
SD/PD (D), RS/TS/AF/SD/Pd (E), and RS/TS/PP/TA/SD/Pd/
SC/ PD (F).

Figure 14. The ranks and estimated weights of all optimized 
parameters in the two combinations for steel and its alloys: 
RS/TS/SD (A), and RS/TS/TA (B) and for copper and its 
alloys: RS/TS/SD (C), and RS/TS/NOP (D).

Figure 15. The ranks and estimated weights of all optimized 
parameters in the seven combinations for dissimilar 
aluminum-to-copper and their alloys: RS/TS (A), RS/TS/SD 
(B), RS/TS/TA (C), RS/TS/TO (D), RS/TS/PD/TO (E), RS/TS/
SD/TO (F), and RS/TS/PP//D/d ratio/TO (G).

Figure 16. The ranks and estimated weights of all optimized 
parameters in the four combinations for dissimilar 
aluminum-to-steel and their alloys: RS/TS/TO (A), RS/TS/
SD(B), RS/TS/TA/Pd (C), and RS/TS/TA/TO (D).

ranking and estimated weights of optimized parameters 
in the available combination for steel alloys to copper are 
demonstrated in Figure 17B. A comparison between the 
ranks of the parameters in the optimized combinations for 
all metal groups is illustrated in Table 14.

2.3 Weights Aggregation of FSW Parameters
Herein, the goal is to aggregate the weights of each 

parameter from all relations and combinations for each 
metal group separately. Figures 18A-19B illustrate the 
aggregation process of weights of the twelve parameters 
optimized for aluminum and its alloys, the ten parameters 
optimized for magnesium and its alloys, the four parameters 
optimized for steel and its alloys, and the four parameters 
optimized for copper and its alloys, respectively. For the 
dissimilar joining of metals, Figure 20A and 20B illustrates 
the aggregation process of weights of the eight parameters 
optimized for dissimilar aluminum-to-copper and their 
alloys and the six parameters optimized for dissimilar 
aluminum-to-steel and their alloys, respectively.

3 RESULTS
3.1 The Final Ranking of FSW Parameters

After collecting all weights of the parameters, there 
was a deficiency in the number of collected weights of all 
parameters except for RS and TS, which were optimized 
in all combinations and rankings. Thus, to increase the 
accuracy, the overall ranking was estimated in following 
two manners. First, the ranking of a parameter in its metal 
group is based on its total weight divided by the total 
number of combinations in this metal group, called weight 
criterion 1. Second, the ranking of a parameter is based 
on its total weight divided by the number of combinations 
containing this parameter only in its metal group, called 
weight criterion 2. The two criteria were used to rank the 
parameters in each metal group. The overall ranking and 
weights of the parameters optimized for aluminum and its 
alloys, magnesium and its alloys, steel and its alloys, copper 
and its alloys, dissimilar aluminum-to-copper and their 
alloys, and dissimilar aluminum-to-steel and their alloys are 
shown in Figures 21-23. The overall ranking and weights of 
the parameters in the metal groups of dissimilar aluminum-
to-magnesium and dissimilar steel-to-copper are identical 
to the estimated in its combination (Figure 17). This is 
attributed to the use of a single combination of parameters 
in these groups. Despite the alterations in the order of the 
parameters based on the type of metal, the RS, TS, TA, 

Figure 17.The ranks and estimated weights of optimized 
parameters for dissimilar aluminum-to-magnesium and 
their alloys: RS/TS/TA (A) and for dissimilar steel-to-copper 
and their alloys: RS/TS/TA (B).

A B C

D E

F

A B

C D

A B C

D E

F G

A B

C D

A B
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Table 16. A Comparison between the Ranks of the Parameters in the Optimized Combinations for All Metal Groups

# Combinations of parameters
Metal groups

Aluminum
(Al)

Magnesium
(Mg)

Steel
(St)

Copper
(Cu) Al/St Al/Cu Al/Mg St/Cu

2 RS/TS 1/1 1/2

3 RS/TS/PP 1/1/1

RS/TS/TA 1/3/2 3/2/1 1/3/2 3/1/2 1/2/3

RS/TS/PD 2/1/3

RS/TS/AF 1/3/2 1/2/3

RS/TS/SD 3/1/2 1/3/2 1/2/3 2/1/3

RS/AF/PP 3/2/1

RS/TS/TO 1/2/3 3/1/2

RS/TS/NOP 3/2/1 3/1/2

4 RS/TS/PP/TA 4/3/1/2

RS/TS/SD/Pd 1/2/3/4

RS/TS/SD/PD 4/3/1/2

RS/TS/SD/TO 1/3/4/2

RS/TS/PD/TO 2/3/1/4

RS/TS/TA/SD 2/3/1/4  

RS/TS/TA/PL 3/2/4/1

RS/TS/TA/Pd 2/1/4/3

RS/TS/PP//D/d ratio 2/4/3/1  

RS/TS/TA/TO 1/2/4/3 2/1/4/3  

RS/TS/AF/PP 1/4/2/3  

5 RS/TS/PP/TA/TO 1/5/4/3/2  

RS/TS/TA/PL//D/d ratio 3/3/5/2/1  

RS/TS/PP//D/d ratio/TO 2/4/1/5/3

RS/TS/AF/PP/TA 3/5/4/1/2

RS/TS/AF/SD/Pd 4/2/3/5/1

7 RS/TS/PP/TA/PD/BMS//
D/d ratio

5/1/7/6/2/3/3

8 RS/TS/PP/TA/SD/Pd/SC/
 PD

4/1/3/5/2/8/7/5

Figure 18. The aggregation of weights of the twelve FSW parameters optimized for aluminum and its alloys (A) and the 
aggregation of weights of the ten FSW parameters optimized for magnesium and its alloys (B).

and PP are considered the most dominant parameters to 
maximize the responses of many various metal joints. It 
is also insufficient to control these parameters only. Some 
other parameters besides the previously mentioned should 

be handled according to their ranking for each metal 
type. It should control the D/d ratio and PL for the joints 
of aluminum and its alloys. The number of passes and SD 
should be handled for the joints of magnesium alloys. TO is 

A B
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Figure 19. The aggregation of weights of the four FSW parameters optimized for steel and its alloys (A) and for copper and 
its alloys (B).

Figure 20. The aggregation of weights of the eight FSW parameters optimized for dissimilar aluminum-to-copper and their 
alloys (A) and the aggregation of weights of the six FSW parameters optimized for dissimilar aluminum-to-steel and their 
alloys (B).

Figure 21. The final ranks and weights of the parameters optimized for aluminum and its alloys according to weight criterion 
1 (A) and weight criterion 2 (B), and for magnesium and its alloys according to weight criterion 1 (C) and weight criterion 2 (D).

Figure 22. The final ranks and weights of the parameters optimized for steel and its alloys according to weight criterion 
1 (A) and weight criterion 2 (B), and the final ranks and weights of the parameters optimized for copper and its alloys 
according to weight criterion 1 (C) and weight criterion 2 (D).

significant in both aluminum-to-steel joints and aluminum-
to-copper joints. A comparison of the overall ranking of the 

parameters for all metal groups is given in Table 17.
It is required to maintain these parameters at optimal 

A B

A B

C DA B

C DA B
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Figure 23. The final ranks and weights of the parameters optimized for dissimilar aluminum-to-copper and their alloys 
according to weight criterion 1 (A) and weight criterion (B) and the final ranks and weights of the parameters optimized for 
dissimilar aluminum-to-steel and their alloys according to weight criterion 1 (C) and weight criterion 2 (D).

Table 17. A Comparison of the Overall Ranking of the Parameters for All Metal Groups

Parameters
Ranking 

Aluminum Magnesium Steel Copper Aluminum
/Steel

Aluminum
/Copper

Aluminum/
Magnesium

Steel/ 
Copper

RS 1/3 2/6 4/4 2/2 1/1 1/3 3/3 1/1

TS 2/6 1/5 1/2 1/1 2/2 2/4 1/1 2/2

AF 7/9 7/8 - - - - - -

TA 3/5 9/9 2/1 - 4/6 6/5 2/2 3/3

SD 10/11 4/3 3/3 4/4 6/5 7/7 - -

PP 4/4 3/2 - - - 5/2 - -

PD 9/8 8/7 - - - 4/1 - -

Pd 12/12 6/4 - - 5/3 - - -

TO 8/7 - - - 3/4 3/6 - -

D/d ratio 5/2 - - - - 8/8 - -

PL 6/1 - - - - - - -

BMS 11/10 - - - - - - -

NOP - 5/1 - - - - - -

SC - 10/10 - - - - - -

(1st No./2nd No.)*: 1st: first rank using weight criterion 1, 2nd: second rank using weight criterion 2

levels depending on the process and production conditions, 
which requires pre-testing the levels of the parameters on the 
desired process. Based on the literature, the optimal levels (L) 
of the parameters were collected and formulated on a domain 
for each type of metal joint. The domain involves two limits, 
namely upper level, and lower levels. Operating out of the 
limits will drastically affect the responses (properties). The 
domains of the optimal levels are expressed in Equations 
(6)-(13) for aluminum, magnesium, steel, copper/brass, 
aluminum to copper, aluminum to steel, aluminum to 
magnesium, and steel to copper. The domain involving a 
limit should remain constant when testing levels. Pin profile: S-Square, TC-Threaded Cylinder, H-Hexa- 

gonal

Pin length*: related to the thickness of the metal used, 
normally less than the metal thickness about 0.2-0.3 mm. 

Units: RS: RPM; TS: min/min; AF: KN; PP: Shape; TA: 

C DA B
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º; D/d ratio: - ; SD: mm; Pd: mm; PD: mm; PL: mm; TO: 
mm; BMS: CW, CCW; NOP: #; SC: º. 

3.2 The General Ranking of FSW Parameters
The final step was to develop the general ranking 

of the FSW parameters regardless of the type of metal 
used. This was done by aggregating the weights of each 
parameter from all metal groups and generating the general 
ranking. Figure 24A and 24B illustrates the aggregation 
process of weights of all FSW parameters optimized using 
weight criteria 1 and 2. The general ranking and final 
weights of the FSW parameters are shown in Figure 25. 
Despite the changes in the order of the parameters based 
on the different criteria used to estimate the weights, the 
parameters could be classified into three categories, namely 
highly significant, moderately significant, and insignificant. 
TS, RS, TA, and PP were highly significant parameters that 
require careful control to maximize the responses. The total 
contributions of these parameters to the output were 83.4% 
and 40.9% based on the criteria used to estimate weights. 
The insignificant parameters were the D/d ratio, BMS, 
SC, AF, and Pd, with a total contribution to the response 
between 4% and 14%. In between, there are moderately 
significant parameters. These parameters are the number 
of passes, TO, SD, PD, and PL. The failure to achieve 
the target specified in the standard by controlling only 
highly significant parameters signifies a need for further 
modification of the FSW process. Thus, parameters of 

Figure 24. The aggregation of weights of the fourteen FSW parameters optimized for the general ranking using weight 
criterion 1 (A) and weight criterion 2 (B).

Figure 25. The general ranking and final weights of the FSW parameters optimized according to (A) weight criterion 1 and (B) 
weight criterion 2.

moderate significance are potential parameters that need 
to be controlled to achieve the target. To limit the selection 
between these parameters, reference should be made to 
the type of metal used and then the parameters with the 
greatest impact on the metal are selected, i.e. controlling PL 
for aluminum, NOP, and SD for magnesium, and TO for 
aluminum-to-steel and aluminum-to-copper.

4 DISCUSSION AND CONCLUSION
The data gathered from literature to be used in the 

ranking process were the contribution percentages and the 
degrees of the parameters obtained from the ANOVA of 
experimental studies. The data were sorted as per the type 
of metals used in the FSW joints. The weights of parameters 
were computed for each metal group individually and then 
aggregated to achieve the general ranking. 

The results can be summarized as follows:
1)	 The parameters were classified into three categories, 

namely highly significant, moderately significant, and 
insignificant.

2)	 TS, RS, TA, and PP are highly significant parameters 
that necessitate careful control to maximize the res- 
ponses.

3)	 The total contributions of the highly significant para- 
meters to the output were 83.4% and 40.9% based on 
the two criteria used to estimate weights.

4)	 The insignificant parameters were the D/d ratio, BMS, 

A B

A B
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SC, AF, and Pd.
5)	 The insignificant parameters may be ignored due to a 

low contribution of 14% or 4%, obtained from the two 
manners used for weight estimation.

6)	 The moderately significant parameters were the 
number of passes, TO, SD, PD, and PL.

7)	 The failure to achieve the target specified in the 
standard by controlling only highly significant 
parameters signifies a need for further modification 
of the FSW process. Thus, parameters of moderate 
significance are potential parameters that need to be 
controlled to achieve the target. 

8)	 To limit the selection between these parameters, 
reference should be made to the type of metal used 
and then the parameters with the greatest impact on the 
metal are selected, i.e. controlling PL for aluminum, 
NOP, and SD for magnesium, and TO for aluminum-to-
steel and aluminum-to-copper.

9)	 The optimal levels of the parameters were formulated 
on equations having a domain for each type of metal. 
Operating out of the limits will drastically affect the 
responses (properties).
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Abbreviation List
AA, Aluminum alloy 
AF, Axial Force
AHP, Analytic hierarchy process
ANOVA, Analysis of variance
AS, Advancing side
BBD, Box-Behnken design
BMS, Base metal side
CCD, Central composite design 
CI, Consistency Index
CR, Consistency ratio
D/d ratio, Ratio between shoulder diameter to pin diameter
DOE, Design of experiments 
FDD, Full factorial design 
FSW, Friction stir welding
GRA, Gray relation analysis
LP, Number of levels and parameters
NOP, No of passes
Pd, Pin diameter

PD, Plunge depth
PL, Pin length
PP, Pin profile
RI, Random Index
RS, Rotational speed/ rpm 
SC, Shoulder concavity 
SC, Shoulder cavity
SD, Shoulder diameter
TA, Tilt angle
TO, Tool offset
TS, Traverse speed
UTS, Ultimate tensile strength
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